» » » Ричард Фейнман - 5b. Электричество и магнетизм


Авторские права

Ричард Фейнман - 5b. Электричество и магнетизм

Здесь можно скачать бесплатно "Ричард Фейнман - 5b. Электричество и магнетизм" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
5b. Электричество и магнетизм
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "5b. Электричество и магнетизм"

Описание и краткое содержание "5b. Электричество и магнетизм" читать бесплатно онлайн.








(12.23)

Для внутренних точек вклад в поле дают только заряды Q(r), находящиеся внутри сферы радиусом r; Q(r) =4pг3r/3, следовательно,

(12.24)

Поле растет линейно с r. Интегрируя Е, получаем j:

На расстоянии радиуса а jвнешн должен совпадать с jвнутр) поэтому постоянная должна быть равна rа2/2e0. (Мы предпола­гаем, что потенциал j равен нулю на больших расстояниях от источника, а это для нейтронов будет отвечать обращению .N в нуль.) Следовательно,

(12.25)

Теперь мы сразу же найдем плотность нейтронов в на­шей диффузионной задаче

(12.26)

и

(12.27)

На фиг. 12.7 представлена зависимость N от r.

Чему же теперь равно отношение плотности в центре к плотности на краю? В центре (r=0) оно пропорционально За2/2, а на краю (r=а) пропорционально 2а2/2; поэтому отно­шение плотностей равно 3/2. Однородный источник не дает однородной плотности нейтронов. Как видите, наши познания в электростатике дают хорошую затравку для изучения физики ядерных реакторов.

Диффузия играет большую роль во многих физических об­стоятельствах. Движение ионов через жидкость или электро­нов через полупроводник подчиняется все тому же уравнению. Мы снова и снова приходим к одним и тем же уравнениям.

§ 5. Безвихревое течение жидкости; обтекание шара

Рассмотрим теперь пример, по существу, не такой уж хоро­ший, потому что уравнения, которые мы будем использовать, на самом деле не описывают новый объект полностью, а отве­чают лишь некоторым идеализированным условиям. Это задача о течении воды. Когда мы разбирали случай натянутой плен­ки, то наши уравнения представляли приближение, справед­ливое лишь для малых отклонений. При рассмотрении течения воды мы прибегнем к приближению другого рода; мы должны принять ограничения, которые, вообще говоря, к обычной воде неприменимы. Мы разберем только случай постоянного тече­ния несжимаемой, невязкой, лишенной завихрений жидкости. Потом мы опишем течение, задав ему скорость v(r) как функцию положения г. Если движение постоянно (единственный случай, для которого имеется электростатическая аналогия), v не за­висит от времени. Если r — плотность жидкости, то rv — масса жидкости, проходящая в единицу времени через единичную площадку. Из закона сохранения вещества дивергенция pv, вообще говоря, равна изменению со временем массы вещества в единице объема. Мы предположим, что процессы непрерыв­ного рождения или уничтожения вещества отсутствуют. Сохра­нение вещества требует тогда, чтобы С·rv=0. (В правой части должно было бы стоять, вообще говоря, —dr/dt, но поскольку наша жидкость несжимаема, то r меняться не может.) Так как r повсюду одинаково, то его можно вынести, и наше уравнение запишется просто

С·v=0.

Чудесно! Снова получилась электростатика (без зарядов); уравнение совсем похоже на С·E=0. Ну не совсем! В электро­статике не просто С·E=0. Есть два уравнения. Одно уравне­ние еще не дает нам всего; нужно дополнительное уравнение. Чтобы получилось совпадение с электростатикой, у нас rot от v должен был бы равняться нулю. Но для настоящих жид­костей это вообще не так. В большинстве их обычно возникают вихри. Следовательно, мы ограничиваемся случаем, когда циркуляция жидкости отсутствует. Такое течение часто назы­вают безвихревым. Как бы то ни было, принимая наши пред­положения, можно представить себе течение жидкости, ана­логичное электростатике. Итак, мы берем

С·v=0 (12.28)

и

СXv = 0. (12.29)

Мы хотим подчеркнуть, что условия, при которых течение жидкости подчиняется этим уравнениям, встречаются весьма нечасто, но все-таки бывают. Это должны быть случаи, когда поверхностным натяжением, сжимаемостью и вязкостью можно пренебречь и когда течение можно считать безвихревым. Эти условия выполняются столь редко для обычной воды, что мате­матик Джон фон Нейман сказал по поводу тех, кто анализи­рует уравнения (12.28) и (12.29), что они изучают «сухую воду»!

| (Мы возвратимся к задаче о течении жидкости более подробно

в вып. 7, гл. 40 и 41.)

Поскольку СXv=0, то скорость «сухой воды» можно написать в виде градиента от некоторого потенциала

v=-Сj. (12.30)

Каков физический смысл y? Особо полезного смысла нет. Скорость можно записать в виде градиента потенциала просто потому, что течение безвихревое. По аналогии с электростати­кой y называется потенциалом скоростей, но он не связан с потенциальной энергией так, как это получается для j. Поскольку дивергенция v равна нулю, то

(12.31)

Потенциал скоростей y подчиняется тому же дифференциаль­ному уравнению, что и электростатический потенциал в пустом пространстве (r=0).

Давайте выберем какую-нибудь задачу о безвихревом те­чении и посмотрим, сможем ли мы решить ее изученными ме­тодами. Рассмотрим задачу о шаре, падающем в жидкости. Если он движется слишком медленно, то силы вязкости, кото­рыми мы пренебрегали, будут существенны. Если он движется слишком быстро, то следом за ним будут идти маленькие вихри (турбулентность) и возникнет некоторая циркуляция воды. Но если шар движется и не чересчур быстро, и не чересчур медленно, то течение воды будет более или менее отвечать нашим предположениям, и мы сможем описать движение воды нашими простыми уравнениями.

Удобно описывать процесс в системе координат, скреплен­ной с шаром. В этой системе координат мы задаем вопрос: как течет вода около неподвижного шара, если на больших расстояниях течение однородно? Иначе говоря, если вдали от шара течение всюду одина­ково? Течение вблизи шара будет иметь вид, показан­ный линиями потока на фиг. 12.8. Эти линии, всег­да параллельные v, соответ­ствуют линиям напряженностей электрического поля.

Фиг. 12.8. Поле скоростей без­вихревого обтекания сферы жидко­стью.

Мы хотим получить количественное описание поля скоростей, т. е. выражение для скорости в любой точке Р.

Можно найти скорость как градиент от y), поэтому сначала определим потенциал. Мы хотим найти потенциал, который удовлетворял бы всюду (12.31) при следующих двух условиях: 1) течение отсутствует в сферической области за поверхностью шара; 2) течение постоянно на больших рас­стояниях. Чтобы выполнялось первое ограничение, компонен­та v, перпендикулярная поверхности шара, должна обращаться в нуль. Это значит, что dy/dr=0 при r=а. Для выполнения второго ограничения нужно иметь dy/dz=v0всюду, где r>>а.Строго говоря, нет ни одной электростатической задачи, кото­рая в точности соответствовала бы нашей задаче. Она факти­чески соответствует сфере с нулевой диэлектрической прони­цаемостью, помещенной в однородное электрическое поле. Если бы мы имели решение задачи для сферы с диэлектриче­ской проницаемостью x, то, положив x=0, немедленно решили бы нашу задачу.

Мы раньше не разобрали такую электростатическую за­дачу во всех подробностях; давайте сделаем это сейчас. (Мы могли бы сразу решить задачу о жидкости с v и y, но будем пользоваться Е и j, потому что привыкли к ним.)

Задача ставится так: найти такое решение уравнения С2j=0, чтобы Е=-Сj равнялось постоянной, скажем Е0, для больших r и, кроме того, чтобы радиальная компонента Е была равна нулю при r=а. Иначе говоря,

(12.32)

Наша задача включает новый тип граничных условий — когда дj/дr постоянно, а не тот, когда потенциал j постоянен на поверхности. Это немножко другое условие. Получить ответ сразу нелегко. Прежде всего без шара j был бы равен —E0z.Тогда Е было бы направлено по z и имело бы всюду постоянную величину Е0. Мы уже исследовали случай диэлектрического шара, поляризация внутри которого однородна, и нашли, что поле внутри поляризованного шара однородно, а вне его оно совпадает с полем точечного диполя, расположенного в центре шара. Давайте напишем, что искомое решение есть суперпо­зиция однородного поля плюс поле диполя. Потенциал диполя (см. гл. 6) есть pz/4pe0r3. Итак, мы предполагаем, что

(12.33)

Поскольку поле диполя спадает, как 1/r3, то на больших рас­стояниях мы как раз имеем поле Е0. Наше предположение автоматически удовлетворяет сформулированному выше второму условию (стр. 249). Но что нам взять в качестве силы диполя p? Для ответа мы должны использовать другое условие [урав­нение (12.32)]. Мы должны продифференцировать j по r, но, разумеется, это нужно сделать при постоянном угле q, поэтому удобнее выразить сначала j через r и q, а не через z и r. По­скольку z=rcosq, то


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "5b. Электричество и магнетизм"

Книги похожие на "5b. Электричество и магнетизм" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 5b. Электричество и магнетизм"

Отзывы читателей о книге "5b. Электричество и магнетизм", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.