» » » Ричард Фейнман - 8. Квантовая механика I


Авторские права

Ричард Фейнман - 8. Квантовая механика I

Здесь можно скачать бесплатно "Ричард Фейнман - 8. Квантовая механика I" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
8. Квантовая механика I
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "8. Квантовая механика I"

Описание и краткое содержание "8. Квантовая механика I" читать бесплатно онлайн.








Кстати, следует отметить, что матрица <i|U(t2, t1|j> могла бы дать гораздо больше всяких деталей, чем нам обычно нужно. Теоретик высокого класса, работающий в физике высоких энергий, рассматривает примерно такие проблемы (потому что именно так обычно ставятся эксперименты): он начинает с двух частиц, скажем с протона и протона, налетающих друг на друга из бесконечности. (В лаборатории обычно одна частица покоится, другая же вылетает из ускорителя, кото­рый по атомным масштабам пребывает в бесконечности.) Они сталкиваются, и в итоге появляются, скажем, два К -мезона, шесть p-мезонов и два нейтрона с определенными импульсами в определенных направлениях. Какова амплитуда того, что это случится? Математика здесь выглядит так. Состояние j отмечает спины и импульсы сближающихся частиц. а c — это сведения о том, что получается в конце. К примеру, с какой амп­литудой вы получите шесть мезонов, идущих в таких-то и та­ких-то направлениях, а два нейтрона, вылетающих вот в этих направлениях и со спинами, торчащими так-то и так-то. Ины­ми словами, c отмечается заданием всех импульсов, спинов и т. п. конечных продуктов. И вот работа теоретика состоит в том, чтобы подсчитать амплитуду (6.27). Однако на самом деле его интересует только частный случай, когда t1=-Ґ, а t2 =+Ґ. (У нас не бывает экспериментальных данных о де­тальном ходе процесса, известно только, что вошло и что вышло. Предельный случай U (t2, t1)при t1®-Ґ и t2®+Ґ обозначается буквой S; теоретик нуждается в величине

<c|S|j>.

Или, если пользоваться формой (6.28), ему нужно вычислить матрицу

<i|S|j>,

называемую S-матрицей. Стало быть, если вы увидите физика-теоретика, который меряет шагами комнату и говорит: «Мне нужно только вычислить S-матрицу», — то вы теперь уже будете понимать, над чем он ломает голову.

Как анализировать S-матрицу, т. е. как указать законы для нее,— вопрос интересный. В релятивистской квантовой механике при высоких энергиях это делается одним способом, в нерелятивистской же квантовой механике — другим, более удобным. (Он годится и в релятивистском случае, но перестает быть таким удобным.) Состоит он в том, чтобы вывести U-мат­рицу для небольших интервалов времени, т. е. для близких t2 и t1. Если мы сможем найти последовательность таких U для последовательных интервалов времени, то сможем проследить за тем, как все меняется в зависимости от времени. Сразу же ясно, что для теории относительности этот способ не очень хорош, потому что не так уж просто указать, как «одновремен­но» все всюду выглядит. Но не стоит нам думать об этом; нашей заботой будет только нерелятивистская механика.

Рассмотрим матрицу U для задержки от t1до t3, где t3 больше t2. Иными словами, возьмем три последовательных момента: t1 меньше t2, t2 меньше t3. Тогда мы утверждаем, что матрица, которая тянется от t1до t3, получается перемноже­нием подряд всего того, что происходит при задержке от t1 до t2, и затем от t2до t3. Это в точности то же самое, что было с двумя последовательными приборами В и А. Тогда, следуя обозначениям, принятым в гл. 3, § 6, мы можем написать

Иначе говоря, можно проанализировать любой интервал вре­мени, если мы умеем анализировать последовательность про­межуточных коротких интервалов. Мы просто перемножаем все куски; это и есть способ нерелятивистского анализа кван­товой механики.

Итак, задача состоит в том, чтобы узнать матрицу U(t2, t1) для бесконечно малого интервала времени — для t2=t1+Dt. Спросим себя: если сейчас у нас есть состояние j, то как оно будет выглядеть через бесконечно малое время Dt? Посмотрим, как это можно расписать. Обозначим состояние в момент t через |y(t)> (мы указываем зависимость y от времени, чтобы было совершенно ясно, что речь идет об условиях в момент t). Теперь зададим вопрос: каково будет положение вещей через короткое время Dt? Ответ таков:

Здесь имеется в виду то же, что и в (6.25), а именно, что амплитуда обнаружить c в момент t+Dt есть

Поскольку мы еще не очень хорошо разбираемся в этих абстрактных вещах, то давайте спроецируем наши амплитуды в определенное представление. Умножая обе части (6.31) на <i|, получаем

Можно также разложить и |y(t)> на базисные состояния и написать

Понять это можно так. Если через Ci(t)=<i|y|(t)> обозна­чить амплитуду пребывания в базисном состоянии i в момент t, то можно считать эту амплитуду (помните, это просто число!) меняющейся во времени. Каждое Сiстановится функцией времени t. Кроме того, у нас есть информация о том, как амп­литуды Сiменяются во времени. Каждая амплитуда в момент (t+Dt) пропорциональна всем прочим амплитудам в момент t, умноженным на ряд коэффициентов. Обозначим U-матрицу через Uij, считая, что

Uij=<i|U|j>.

Тогда (6.34) можно записать так:

Вот как будет выглядеть динамика квантовой механики.

Нам пока мало известно об Uij. Мы знаем только, что при Dt, стремящемся к нулю, ничего не должно произойти, просто должно получиться начальное состояние. Значит, Uij®1 и Uij®0 при i№j. Иными словами, Uij®dij при Dt®0. Кроме того, мы вполне вправе предположить, что при малых At каж­дый из Uijобязан отличаться от dij на величину, пропорцио­нальную Dt; так что можно писать

Однако обычно по историческим и по иным причинам из коэф­фициентов Кijвыносят множитель

(-i/h) ; предпочитают писать

Это, разумеется, то же самое, что и (6.36). Если угодно, это просто определение коэффициентов Hij(t).Члены Hij— это как раз производные по t2от коэффициентов Uij(t2, t1), вычисляемые при t2=t1=t,

Подставляя в (6.35) этот вид U, получаем

Суммируя члены с dij, получаем просто Ci(t), что можно пере­нести в другую сторону уравнения. После деления на Dt мы распознаем в этом производную

или

Вы помните, что Сi(t) — это амплитуда <i|y> обнаружить состояние y в одном из базисных состояний i (в момент t). Значит, уравнение (6.39) сообщает нам, как каждый из коэф­фициентов <i|y> меняется со временем. Но это все равно, что сказать, что (6.39) сообщает нам, как со временем меня­ется состояние y, раз мы описываем y через амплитуды < i|y>. Изменение y со временем описывается через матрицу Нij, которая, конечно, должна включать все то, что мы делали с системой, чтобы вызвать ее изменения. Если мы знаем матрицу Hij, которая содержит в себе всю физику явления и может, вообще говоря, зависеть от времени, то у нас есть полное опи­сание поведения системы во времени. Таким образом, (6.39)— это квантовомеханический закон для динамики мира.

(Нужно сказать, что мы всегда будем выбирать совокуп­ность базисных состояний, которые фиксированы и со временем не меняются. Иногда используют такие базисные состояния, которые сами меняются. Однако это все равно, что пользова­ться в механике вращающейся системой координат, а мы не хотим входить в подобные тонкости.)

§ 5. Гамилътонова матрица


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "8. Квантовая механика I"

Книги похожие на "8. Квантовая механика I" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 8. Квантовая механика I"

Отзывы читателей о книге "8. Квантовая механика I", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.