» » » Ричард Фейнман - 8. Квантовая механика I


Авторские права

Ричард Фейнман - 8. Квантовая механика I

Здесь можно скачать бесплатно "Ричард Фейнман - 8. Квантовая механика I" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
8. Квантовая механика I
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "8. Квантовая механика I"

Описание и краткое содержание "8. Квантовая механика I" читать бесплатно онлайн.








Вам должно становиться понятно, в какую форму выли­вается квантовомеханическое описание, когда мы описываем поведение чего-либо во времени.

* Если вы пропустили гл. 4, то можете пока просто считать (5.35) невыведенным правилом. Позже, в гл. 8, мы разберем прецессию спина подробнее, будут получены и эти амплитуды.

* Мы предполагаем, что фазы обязаны иметь одно и то же значение в соответствующих точках в двух системах координат. Впрочем, это весьма тонкое место, поскольку в квантовой механике фаза в значитель­ной степени произвольна. Чтобы до конца оправдать это предположение, нужны более детальные рассуждения, учитывающие интерференцию двух или нескольких амплитуд.

 

 

Глава 6

ГАМИЛЬТОНОВА МАТРИЦА

§ 1. Амплитуды и векторы

§ 2. Разложение век­торов состояний

§ 3. Каковы базисные состояния мира?

§ 4. Как состояния меняются во времени

§ 5. Гамильтонова матрица

§ б. Молекула аммиака

Повторить: гл. 49) (вып. 4) «Собст­венные колеба­ния»

§ 1. Амплитуды и векторы

Прежде чем приступить к основной теме этой главы, мы хотели бы изложить несколько математических идей, которые часто встреча­ются в книгах по квантовой механике. Знание их облегчит вам чтение других книг или статей по этому предмету. Первая идея — это тесное математическое подобие между уравнениями квантовой механики и формулами для скаляр­ного произведения двух векторов. Вы помните, что если c и j — два состояния, то амплитуда начать в j и кончить в c может быть записана в виде суммы (по полной совокупности базис­ных состояний) амплитуд перехода из j в одно из базисных состояний и затем из этого базис­ного состояния уже в c:

Мы объясняли это при помощи прибора Штер­на — Герлаха, но сейчас напоминаем вам, что в этих приборах нет нужды. Уравнение (6.1) — это математический закон, который верен всег­да, все равно, есть ли у нас фильтровальное оборудование или нет; вообще совсем не обя­зательно воображать наличие какого-то при­бора. Можно рассматривать это просто как формулу для амплитуды <c|j>.

Сопоставим (6.1) с формулой для скалярного произведения двух векторов В и А. Если В и А — обычные трехмерные векторы, то ска­лярное произведение можно написать так:

считая, что символ еi обозначает любой из трех единичных векторов в направлениях х.у и z. Тогда B·e1— это то, что обычно называют Вх, а В·е2— то, что обычно называют By, и т,д. Значит, (6.2) эквивалентно

ВхАхуАугАг,

а это и есть скалярное произведение В·А.

Сравнение (6.1) с (6.2) обнаруживает следующую аналогию. Состояния c и j соответствуют двум векторам А и В. Базис­ные состояния i отвечают специальным векторам еi, к которым мы относим все прочие векторы. Любой вектор может быть представлен как линейная комбинация трех «базисных векто­ров» еi. Далее, если вам известны коэффициенты при каждом «базисном векторе» в этой комбинации, т. е. три его компонен­ты, то вы знаете о векторе все. Точно так же любое квантовомеханическое состояние может быть полностью описано ампли­тудами <i|j> перехода в базисные состояния, и если эти коэф­фициенты вам известны, то вы знаете все, что можно знать о состоянии. Из-за этой тесной аналогии то, что мы назвали «состоянием», часто именуют «вектором состояния».

Раз базисные векторы еi перпендикулярны друг другу, то существует соотношение

Это соответствует соотношению (3.25) между базисными со­стояниями i

Теперь вы понимаете, почему говорят, что базисные состоя­ния i все «ортогональны друг другу».

Между (6.1) и скалярным произведением есть одно мини­мальное различие. У нас

а в векторной алгебре

А·В = В·А.

В квантовой механике с ее комплексными числами мы обязаны выдерживать порядок множителей, а в скалярном произве­дении порядок неважен.

Теперь рассмотрим такое векторное уравнение:

оно немножко необычно, но тем не менее верно. И означает оно то же самое, что и

Заметьте, однако, что в (6.6) входит величина, отличная от скалярного произведения. Скалярное произведение — это про­сто число, а (6.6) — векторное уравнение. Одним из великих приемов векторного анализа было абстрагировать от уравне­ний идею самого вектора. Равным образом можно попытаться абстрагировать от уравнения (6.1) то, что в квантовой механике является аналогом «вектора». И это действительно можно сделать. Уберем <c| по обе стороны (6.1) и напишем такое урав­нение (не пугайтесь — это просто обозначение, и через пару минут вы узнаете, что означают эти символы):

Скобку <c|j> представляют себе состоящей из двух полови­нок. Вторую половинку |j> называют кет, а первую <c| на­зывают брэ (поставленные рядом они образуют брэ-кетєbгаcket, скоб-каєскобка — обозначение, предложенное Дираком); полусимволы <c| и |j> также называют векторами состоя­ний. Это не числа отнюдь, а нам вообще-то нужно, чтобы результаты наших расчетов выражались числами; стало быть, такие «незаконченные» величины представляют собой проме­жуточные шаги в расчетах.

До сих пор мы все свои результаты выражали с помощью чисел. Как же мы умудрялись избегать векторов? Забавно, что даже в обычной векторной алгебре можно сделать так, чтобы во все уравнения входили только числа. Например, вместо векторного уравнения типа

F=та всегда можно написать

C·F=(ma).

Получается уравнение, связывающее скалярные произведения и справедливое для любого вектора С. Но если оно верно для любого С, то едва ли имеет смысл вообще писать это С!

Теперь вернемся к (6.1). Это уравнение справедливо при любых c. Значит, для сокращения письма мы должны просто убрать c и написать вместо (6.1) уравнение (6.8). Это уравне­ние снабдит нас той же самой информацией, лишь бы мы пони­мали, что его всегда надлежит «завершить», «умножив слева на...», т. е. просто дописав некоторое <c| по обе стороны знака равенства. Следовательно, (6.8) означает в точности то же, что и (6.1),— ни более ни менее. Если вы предпочитаете числа, вы подставляете то <c|, которое вам нужно.

Может быть, вы в уравнении (6.8) уже нацелились и на j? Раз (6.8) справедливо при любом j, зачем же нам его держать? И действительно, Дирак предлагает абстрагироваться и от j, так что остается только

Вот он каков — великий закон квантовой механики! Этот закон утверждает, что если вы вставите любые два состояния c и j с обеих сторон, слева и справа, то опять вернетесь к (6.1). Уравнение (6.9) вообще-то не очень полезно, но зато является неплохим напоминанием о том, что уравнение выполняется для любых двух состояний.

§ 2. Разложение векторов состояний

Посмотрим на уравнение (6.8) еще раз; его можно рассмат­ривать следующим образом. Любой вектор состояния |j> может быть представлен в виде линейной комбинации совокуп­ности базисных «векторов» с подходящими коэффициентами, или, если угодно, в виде суперпозиции «единичных векторов» в подходящих пропорциях. Чтобы подчеркнуть, что коэффи­циенты <i|j> — это просто обычные (комплексные) числа, на­пишем

<i|j>=Сi. Тогда (6.8) совпадает с

Такое же уравнение можно написать и для всякого другого вектора состояния, скажем для |c>, но, конечно, с другими коэффициентами, скажем с Di. Тогда будем иметь

где Di это просто амплитуды <i|c>.

Представим, что мы начали бы с того, что в (6.1) абстра­гировались бы от j. Тогда мы бы имели

Вспоминая, что <c|i>=<i|c>*, можно записать это в виде

А теперь интересно вот что: чтобы обратно получить <c|j>, можно просто перемножить (6.13) и (6.10). Только, делая это, надо быть внимательным к индексам суммирования, потому что они в разных уравнениях разные. Перепишем сперва (6.13):


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "8. Квантовая механика I"

Книги похожие на "8. Квантовая механика I" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 8. Квантовая механика I"

Отзывы читателей о книге "8. Квантовая механика I", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.