» » » » Лев Генденштейн - Алиса в стране математики


Авторские права

Лев Генденштейн - Алиса в стране математики

Здесь можно скачать бесплатно "Лев Генденштейн - Алиса в стране математики" в формате fb2, epub, txt, doc, pdf. Жанр: Детская образовательная литература, издательство "Паритет" Лтд, год 1994. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Лев Генденштейн - Алиса в стране математики
Рейтинг:
Название:
Алиса в стране математики
Издательство:
"Паритет" Лтд
Год:
1994
ISBN:
5-86906-066-4
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Алиса в стране математики"

Описание и краткое содержание "Алиса в стране математики" читать бесплатно онлайн.



Книга построена на занимательных сказочных сюжетах с персонажами всемирно известных сказок Льюиса Кэрролла «Алиса в Стране Чудес» и «Алиса в Зазеркалье» и призвана пробудить у детей интерес к математике, развить творческое воображение и логическое мышление. В книге содержатся также исторические экскурсы, знакомящие с великими математиками и историей возникновения и развития математики с древности до наших дней.






— Неужели короли могут сейчас что-то обсуждать? — со смехом спросила Алиса.

— Могут, — ответил Кот, тоже смеясь. — На то они и короли!

И вдруг быстрый танец сменился красивым медленным вальсом.

— Как же теперь пажи будут танцевать с королевами? — удивилась Алиса. — Вальс ведь танцуют парами, а на каждую королеву приходится по восемь пажей!

— Сейчас увидишь, — отозвался Кот.

Фигуры внизу снова перестроились, и Алиса увидела, что пажи и королевы танцуют парами! Белые пажи вели чёрных королев, а чёрные — белых: казалось, вся шахматная доска внизу кружится в ритме вальса, и у Алисы закружилась голова.

— Как это получилось? — тряхнув головой, с недоумением спросила Алиса.

— Присмотрись к номерам, и ты всё поймёшь, — посоветовал Кот.

Алиса взяла подзорную трубу и увидела, что номер каждой королевы совпадает с номером той пешки, которая с ней танцует!

— Я поняла! — воскликнула Алиса. — Раз Королевы и пешки есть со всеми номерами, то для любой пешки нашлась королева с таким же номером! И ни одна пешка не осталась в стороне. Действительно, очень удобно, что на этом балу у всех фигур есть номера!

— На таком балу это просто необходимо! — отозвался Кот. — Но смотри: сейчас будут танцевать все фигуры!

— Неужели каждый король будет танцевать с королевой и пажом? — удивилась Алиса. — Странный какой-то танец втроём...

Вальс сменился котильоном, и, к удивлению Алисы, оказалось, что все снова танцуют парами! Взяв подзорную трубу, Алиса увидела, что королевы с чётными номерами танцуют с пажами, а королевы с нечётными номерами — с королями. И поэтому королев хватило и пажам и королям!

— Всё это очень похоже на фокусы! — воскликнула Алиса.

— Никаких фокусов! — торжественно заявил Кот. — Всё строго по правилам. Просто ты ещё не привыкла к бесконечным множествам... Приглашаю тебя на танец!

— Как же мы будем здесь танцевать? — удивилась Алиса, показывая на маленькую корзину воздушного шара.

Вместо ответа Кот потянул какую-то верёвочку, и шар начал плавно снижаться.

Через несколько минут корзина коснулась шахматного паркета. Кот привязал её к серебряному крюку, который оказался как раз рядом с ними, и Алиса под руку с Чеширским Котом ступила на паркет.

Алисе никогда в жизни не приходилось танцевать котильон, но оказалось, что она прекрасно знает все фигуры. А Чеширский Кот танцевал с такой поразительной грацией, будто всю жизнь занимался только бальными танцами!

Скоро Алиса заметила, что вокруг них начали появляться её знакомые.

Кубарем катался под музыку Шалтай-Болтай: он был цел-целёхонек!

Лев и Единорог исполняли танец, похожий чем-то на смертный бой за корону.

Белый и Чёрный Рыцари гарцевали на белой и чёрной лошадях; при этом и Рыцари, и лошади вежливо раскланивались друг с другом.

Шляпник и Мартовский Заяц, пританцовывая, пили чай. Они держали большой поднос, на котором крепко спал Соня — он сидел верхом на чайнике и качал головой точно в такт музыке.

Грифон танцевал с Черепахой Будто; она танцевала в три раза медленнее, чем Грифон, но оба они танцевали с большим удовольствием.

Братья Ха-Ха и Ах-Ах весело отплясывали в своих шляпах для ног — при этом братцы так высоко подбрасывали ноги, что их шляпы для ног оказывались выше, чем настоящие шляпы!

Король Червей галантно вёл Королеву Червей — она была всё так же сурова, но здесь её никто не боялся.

Валет Червей танцевал... угадайте, с кем? С Герцогиней!

— Неужели Младенец всё-таки заснул? — с улыбкой спросила Алиса Герцогиню.

Вместо ответа Герцогиня показала глазами на воздушный шар: в корзине сидел Младенец и с интересом смотрел по сторонам.

Вдруг Алиса заметила, что канат, которым корзина привязана к серебряному крюку, вот-вот развяжется!

— Младенца сейчас унесёт одного! — мелькнуло в голове у Алисы.

Она бросилась к воздушному шару, но не успела: узел развязался совсем, и корзина уже оторвалась от паркета. В последний момент Алиса прыгнула в корзину.

— Вдвоём нам будет веселей! — обрадовался Младенец. Шар начал набирать высоту. Алиса глянула вниз: все подняли головы и смотрели вслед улетающему воздушному шару. Алиса помахала рукой, и в ответ внизу закачался лес рук.

— До свидания! — крикнула Алиса, и руки замахали чаще. Она погладила Младенца по голове, и он почему-то замурлыкал; волосы у Младенца оказались удивительно пушистыми.

Чем выше поднималась Алиса, тем ярче сверкали короны на головах королей и королев. Наконец, блеск бесконечного множества корон стал нестерпимым, Алиса зажмурилась и... проснулась!

Она сидела на диване, свернувшись калачиком. Прямо в лицо ей светили из окна лучи заходящего солнца, на коленях лежал раскрытый учебник математики, а пальцы Алисы погрузились в тёплую шерсть Дины — кошка спала рядом с Алисой и тихонько мурлыкала.

— Ты даже не представляешь, какой мне приснился удивительный сон! — сказала Алиса.

Кошка приоткрыла глаза и посмотрела на Алису таким взглядом, что Алиса поняла: Дина всё знает, но просто не считает нужным об этом рассказывать...

Алиса перевернула несколько страниц учебника, и ей показалось, будто числа и фигуры подмигивают ей, как старые знакомые.

— Я должна рассказать свой сон мистеру Доджсону, — подумала Алиса. — В моём сне была и сказка и математика — и в том и в другом мистер Доджсон разбирается лучше всех!

МОЖЕТ ЛИ ЧАСТЬ РАВНЯТЬСЯ ЦЕЛОМУ?

Любой нормальный человек скажет, что не может, потому что часть меньше целого!

Однако Галилей не был нормальным человеком — он был великим учёным. Поэтому он сомневался во всём и подвергал проверке всё, что мог проверить. Возьмём, сказал он, бесконечный ряд натуральных чисел:

В этом ряду некоторые числа являются квадратами, например, 1, 4, 9, 16. Однако чем дальше движемся мы вдоль натурального ряда, тем реже будут встречаться квадраты: среди первых ста натуральных чисел мы найдём десять квадратов (одна десятая часть от ста), а среди первого миллиона натуральных чисел — только тысячу квадратов (это всего одна тысячная часть от миллиона). В путешествии по натуральному ряду нам встретятся участки любой длины, состоящие только из чисел — «неквадратов»: например, после триллиона идут подряд два миллиона чисел, каждое из которых не является квадратом! Зато стоящие рядом квадраты не попадутся нам никогда!

А теперь, зная всё это, скажите — чего больше: всех натуральных чисел или только квадратов?

Ответ, казалось бы, не вызывает сомнений: ведь числа-квадраты — это только малая часть всех чисел! Однако давайте, следуя Галилею, напишем под каждым натуральным числом его квадрат:

Этот ряд мы можем продолжать сколько угодно: ведь у любого натурального числа есть квадрат. Но это как раз и означает, что квадратов столько же, сколько всех натуральных чисел! А значит, часть действительно равна целому!

Таково поразительное свойство бесконечных множеств, открытое Галилеем. Этим свойством обладают, конечно, только бесконечные множества! Потому оно и кажется нам таким необычным — ведь в жизни мы не встречаемся и никогда не встретимся с бесконечными множествами.

Бесконечность — это гениальная выдумка математиков, и единственное требование к этой выдумке состоит в том, чтобы в ней не было «обмана», то есть противоречий. Однако для того, чтобы выполнить это требование, приходится отказаться от многого из того, к чему мы привыкли, имея дело с конечными множествами. И прежде всего — от аксиомы, что часть всегда меньше целого!

Чтобы вам легче было отказываться от «конечных» привычек, приведём ещё один пример. Оставим в ряду натуральных чисел только каждое десятое число:

10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, ...

Заметьте, что «девять десятых» всех натуральных чисел мы при этом отбросили! А теперь сделаем «фокус» — зачеркнём у каждого из оставленных чисел нуль в конце. Что мы получим? Конечно, снова весь натуральный ряд — он, оказывается, ничуть не уменьшился от того, что мы оставили только «одну десятую» его часть!

Если хотите, можете оставить всего лишь «одну миллионную» часть натурального ряда, то есть числа:

1 000 000, 2 000 000, 3 000 000, 4 000 000, ...

Зачеркните теперь у всех чисел последние шесть нулей, и... «одна миллионная» часть тут же превратится в «целый» натуральный ряд! Он поистине «возрождается из пепла», как сказочная птица Феникс. Теперь вам, наверное, стали понятней и те правила грандиозного «шахматного бала», который наблюдали Алиса с Чеширским Котом.

Теорию бесконечных множеств создали в XIX веке чешский математик Больцано и немецкий математик Кантор. Они догадались, что сравнивать бесконечные множества можно единственным способом: составляя из элементов этих множеств пары (помните танцующие пары на «шахматном балу»?). И если можно составить пары так, что любому элементу первого множества найдется «компаньон» среди элементов второго множества, а любому элементу второго — «компаньон» среди элементов первого множества, причём каждый элемент входит в одну пару, то следует считать, что оба множества содержат элементов поровну.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Алиса в стране математики"

Книги похожие на "Алиса в стране математики" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Лев Генденштейн

Лев Генденштейн - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Лев Генденштейн - Алиса в стране математики"

Отзывы читателей о книге "Алиса в стране математики", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.