» » » » Лев Генденштейн - Алиса в стране математики


Авторские права

Лев Генденштейн - Алиса в стране математики

Здесь можно скачать бесплатно "Лев Генденштейн - Алиса в стране математики" в формате fb2, epub, txt, doc, pdf. Жанр: Детская образовательная литература, издательство "Паритет" Лтд, год 1994. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Лев Генденштейн - Алиса в стране математики
Рейтинг:
Название:
Алиса в стране математики
Издательство:
"Паритет" Лтд
Год:
1994
ISBN:
5-86906-066-4
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Алиса в стране математики"

Описание и краткое содержание "Алиса в стране математики" читать бесплатно онлайн.



Книга построена на занимательных сказочных сюжетах с персонажами всемирно известных сказок Льюиса Кэрролла «Алиса в Стране Чудес» и «Алиса в Зазеркалье» и призвана пробудить у детей интерес к математике, развить творческое воображение и логическое мышление. В книге содержатся также исторические экскурсы, знакомящие с великими математиками и историей возникновения и развития математики с древности до наших дней.






— Как же можно съесть такой торт? — спросила Алиса.

— С чаем, — дружно ответили поварята. — Мы проводим тебя к Мартовскому Зайцу — там сейчас как раз пьют чай!

— А на меня не рассердятся, если я приду без приглашения? — поинтересовалась Алиса.

— С таким тортом можно приходить и без приглашения, — уверенно сказали поварята и двинулись в путь, торжественно неся торт.

Алисе ничего не оставалось, как пойти следом за ними.

Скоро они вышли из города и зашагали по лесной дороге. Присмотревшись, Алиса заметила, что лес кругом довольно странный: длинные-длинные листья росли прямо из земли. Иногда встречались диковинные деревья с высоким стволом; кроны этих деревьев были похожи на огромные цветы одуванчиков и ромашек.

— Это и есть одуванчики и ромашки! — догадалась Алиса, вспомнив о своём теперешнем росте. — А длинные листья — это трава!

Алиса посмотрела на поварят и вдруг поняла, что это просто белые пешки!

— Так вот почему их восемь, — подумала Алиса. — У каждого шахматного короля как раз по восемь пешек! Правда, только в начале игры...

Скоро впереди показался большой дом; трубы дома имели форму заячьих ушей, а крыша была покрыта мехом, и Алиса догадалась, что это дом Мартовского Зайца.

— Как же я приду к чаю такая маленькая? — оробела Алиса. — Я и за стол-то сесть не смогу! Хорошо бы мне подрасти...

И тут же всё кругом начало уменьшаться: растения с длинными листьями превратились в обычную траву, деревья с необычными кронами стали одуванчиками и ромашками, а лесная дорога оказалась тропинкой, идущей через поле!

Впереди Алисы семенили, неся торт, восемь маленьких пешек. Торт, конечно, остался шоколадным, но, увы — он перестал быть огромным! Подходя к дому, Алиса даже засомневалась: прилично ли с таким тортом приходить к чаю без приглашения? И тут она услышала грохот бьющейся посуды.

Стоит ли вообще туда идти? — подумала Алиса, но было уже поздно: пешки-поварята входили в ворота, и Алиса поняла, что её ждут новые приключения.

ОБ ОТРИЦАТЕЛЬНЫХ ЧИСЛАХ И ВСЕОБЩЕЙ МАТЕМАТИКЕ

Каких только обидных названий не давали отрицательным числам — их называли и нелепыми, и ложными, и придуманными... Просто удивительно, что после всего этого отрицательные числа продолжают верно служить людям!

Впервые отрицательные числа появились в Китае около двух тысяч лет назад — тогда ими пользовались для обозначения долгов (помните «минус один торт»?). Ту же роль отрицательные числа играли в Индии начиная с V —VI веков, а позднее — в средневековой Европе. Но учёные таких чисел не признавали: они считали, что «меньше чем ничто» ничего быть не может!

Однако отрицательные числа «перехитрили» математиков: они выросли внутри самой математики! Вот как это произошло.

С давних пор математики решали уравнения. Уравнение — это равенство, в которое входит неизвестная величина (такой величиной может быть, например, площадь поля, возраст человека или число рабов). Решить уравнение — значит узнать, какому числу равна эта неизвестная величина. И вот, когда это число находили, оказывалось иногда, что оно должно быть меньше нуля! Такие решения уравнений считали «ложными», «нелепыми» и отбрасывали их — действительно, разве может, например, площадь поля быть меньше нуля?

Это два уравнения, в которых неизвестное обозначено буквой x. У одного из этих уравнений решение положительное, а у другого — отрицательное

Однако скоро обнаружилось, что даже для того, чтобы получать положительные, вполне «законные» решения, приходится порой пользоваться отрицательными числами в промежуточных вычислениях, как бы на черновике. И эти «нелепые» числа надёжно приводили к правильным результатам, но... при одном удивительном условии: произведение двух отрицательных чисел надо было считать числом положительным! Это казалось настолько странным, что один учёный назвал отрицательные числа «порождением дьявола», а другой заявил, что понять правило умножения отрицательных чисел выше человеческого разумения! В течение нескольких веков математики, скрепя сердце, пользовались отрицательными числами, но признавать их настоящими числами отказывались наотрез.

Признание отрицательных чисел пришло с неожиданной стороны.

В XVII веке жил французский учёный Декарт (во Франции ему, к сожалению, довелось жить очень мало, а книги его во Франции были запрещены). В те времена математика состояла как бы из нескольких отдельных наук: арифметики, которая изучала свойства чисел, алгебры — науки о решении уравнений, и геометрии, где изучались свойства фигур. Кроме того, следуя древним, к математике относили ещё астрономию и музыку!

И вот Декарт задался дерзкой целью: создать науку, которая объединит всю математику. «К области математики, — писал Декарт, — относятся те науки, в которых рассматриваются либо порядок, либо мера, и не имеет значения — будут ли это числа, фигуры, звёзды, звуки или что-нибудь другое... Должна существовать общая наука, объясняющая всё, что относится к порядку и мере... и эта наука должна называться всеобщей математикой».

Основная идея Декарта была гениально проста. Он взял прямую, обозначил на ней точку и написал рядом с ней число «нуль». Затем он взял отрезок определенной длины и стал откладывать этот отрезок, как «единичную меру», вдоль прямой вправо от точки, обозначенной нулём. При этом на прямой появлялись точки, соответствующие числам 1, 2, 3... — эти числа показывали, сколько раз отложен «единичный отрезок» (помните число королевских шагов?). Теперь каждому натуральному числу соответствовала точка на прямой; это был решающий шаг — он связал числа и точки, то есть арифметику и геометрию!

Если на прямой отметить на равных расстояниях друг от друга точки 0, 1, 2, 3 и так далее, то эта прямая превратится в числовую ось

Сделав этот шаг, Декарт догадался, что любую точку на прямой можно сопоставить с числом, и при этом точкам, расположенным на прямой левее нуля, соответствуют как раз отрицательные числа (помните числа левее нуля вдоль дороги для королевских прогулок?). Так, благодаря Декарту, отрицательные числа обрели равноправие с положительными числами и навсегда потеряли свою «нелепость».

Числовая ось неограниченно продолжается в обе стороны: слева на ней расположены отрицательные числа, а справа — положительные

Точку на прямой можно задать одним числом, а для точки на плоскости нужно два числа (помните башенки с двумя числами на перекрёстках двух аллей в Китайском Саду?). Благодаря этому линии на плоскости оказалось возможным связать с уравнениями — так появились графики. О более тесной связи между алгеброй и геометрией нельзя было и мечтать: решение любой геометрической задачи можно было свести теперь к решению уравнений!

Числа, которыми обозначают точки, называют сегодня во всем мире «декартовы координаты», хотя у Декарта были предшественники: греческий учёный Птолемей, составляя во II веке географические карты, пользовался долготой и широтой в качестве географических координат, а арабский поэт-математик Омар Хайям (о нём мы уже писали) пользовался координатами больше чем за пятьсот лет до Декарта! Одновременно с Декартом связь между алгеброй и геометрией открыл и его соотечественник Ферма. Но всё-таки название «декартовы координаты» вполне справедливо: именно Декарт развил идею о взаимосвязи разных областей математики и представил математику как единую науку, «объясняющую всё, что относится к порядку и мере».

Положение любой точки на плоскости можно задать с помощью двух чисел, которые называются координатами этой точки и обозначаются обычно буквами x и y. На рисунке отмечена точка с координатами x = 3 и y = 4

Положение любой точки в пространстве можно задать с помощью трех чисел — координат этой точки (они обозначаются обычно буквами x, y, z). Какие координаты имеет точка, отмеченная на этом рисунке?

НЕБЫЛИЦА О СЛУЧАЕ, КОТОРЫЙ ПОДСКАЗАЛ ДЕКАРТУ ИДЕЮ КООРДИНАТ

Однажды в незнакомый город
Приехал молодой Декарт.
Его ужасно мучил голод.
Стоял промозглый месяц март.

Решил к прохожей обратиться
Декарт, пытаясь дрожь унять:
— Где тут гостиница, скажите?
И дама стала объяснять:

— Идите до молочной лавки,
Потом до булочной, за ней
Цыганка продаёт булавки
И яд для крыс и для мышей,

А дальше будут магазины,
Найдёте в них наверняка
Сыры, бисквиты, фрукты, вина
И разноцветные шелка...

Все объясненья эти слушал
Декарт, от холода дрожа.
Ему хотелось очень кушать,
Но звонкий голос продолжал:

— За магазинами — аптека
(аптекарь там — усатый швед),
И церковь, где в начале века
Венчался, кажется, мой дед...

Когда на миг умолкла дама,
Вдруг произнёс ее слуга:
— Идите три квартала прямо
И два направо. Вход с угла.

КАКОЙ МОМЕНТ БЫЛ ПОСЛЕДНИМ?


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Алиса в стране математики"

Книги похожие на "Алиса в стране математики" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Лев Генденштейн

Лев Генденштейн - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Лев Генденштейн - Алиса в стране математики"

Отзывы читателей о книге "Алиса в стране математики", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.