Ник Лэйн - Энергия, секс, самоубийство

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Энергия, секс, самоубийство"
Описание и краткое содержание "Энергия, секс, самоубийство" читать бесплатно онлайн.
Испокон веков люди обращали взоры к звездам и размышляли, почему мы здесь и одни ли мы во Вселенной. Нам свойственно задумываться о том, почему существуют растения и животные, откуда мы пришли, кто были наши предки и что ждет нас впереди. Пусть ответ на главный вопрос жизни, Вселенной и вообще всего не 42, как утверждал когда-то Дуглас Адамс, но он не менее краток и загадочен — митохондрии.
Они показывают нам, как возникла жизнь на нашей планете. Они объясняют, почему бактерии так долго царили на ней и почему эволюция, скорее всего, не поднялась выше уровня бактериальной слизи нигде во Вселенной. Они позволяют понять, как возникли первые сложные клетки и как земная жизнь взошла по лестнице восходящей сложности к вершинам славы. Они показывают нам, почему возникли теплокровные существа, стряхнувшие оковы окружающей среды; почему существуют мужчины и женщины, почему мы влюбляемся и заводим детей. Они говорят нам, почему наши дни в этом мире сочтены, почему мы стареем и умираем. Они могут подсказать нам лучший способ провести закатные годы жизни, избежав старости как обузы и проклятия. Может быть, митохондрии и не объясняют смысл жизни, но, по крайней мере, показывают, что она собой представляет. А разве можно понять смысл жизни, не зная, как она устроена?
16+
Производство энергии в митохондриях позволяет эукариотическим клеткам быть больше бактерий: в среднем примерно в 10 тысяч — 100 тысяч раз. Большой размер приносит с собой энергетическую эффективность. В определенных пределах (которые, вероятно, определяются эффективностью «распределительных сетей») чем больше, тем лучше. Эта непосредственная выгода, проистекающая из непосредственного преимущества, вероятно, уравновешивает непосредственные недостатки большого размера — необходимость иметь больше генов, больше энергии и улучшенную организацию. Эта выгода, возможно, помогла эукариотам сделать первые шаги вверх по лестнице восходящей сложности.
Пара загадок все еще не дает мне покоя, но, думаю, они объяснимы. Во-первых, часто говорят, что энергетическая эффективность не может быть мишенью естественного отбора, потому что большим животным нужно больше еды. Энергетическая экономия проявляется только на уровне отдельных клеток или в пересчете на грамм массы. Критики теории не преминут заметить, что естественный отбор, как правило, действует на особей, а не на граммы массы. Не спорю, но окружающая среда и потребности организма все же связаны с размером тела. Мы видели, что крыса в семь раз прожорливее человека: в пересчете на единицу массы ей нужно в семь раз больше пищи, чем нам. Однако она не сильнее и не быстрее «относительно» своей окружающей среды. Термин «относительно» в данном случае имеет вполне реальное наполнение. Ясно, что крыса не может убить буйвола, а мы можем, как можем мы поймать и убить любое другое животное. Мир животных определяется их размером, и в нашем собственном мире нам нужно в семь раз меньше пищи в день, чем крысам. Соответственно, мы можем в семь раз дольше обходиться без пищи и воды. Масштаб нашего преимущества даже более очевиден, если учесть, сколько мы съедаем относительно собственной массы. Мышь, например, должна ежедневно съедать половину массы тела, иначе она умрет от голода, а ежедневно мы потребляем всего 2 % собственной массы. По-моему, это явное преимущество. Я не говорю, что преимущество размера всегда оказывается решающим. Маленький размер нередко выгоден, что нашло отражение в разнообразных эволюционных тенденциях. Однако энергетическая эффективность, связанная с большим размером, несомненно, оказала глубокое влияние на эволюцию эукариот.
Вторая загадка — это всеобъемлющий характер энергетического преимущества. Ранее в части 4 мы говорили в основном о млекопитающих и пресмыкающихся. Мы разложили энергетические сбережения на составляющие и пришли к выводу, что они предоставляют организму реальные возможности, а не следуют из ограничений фрактальной сети. С другой стороны, мы видели, что бактерии ограничены соотношением площади поверхности к объему, и это действительно ограничение, а не возможность. Есть ли преимущество размера у отдельных эукариотических клеток, например у амеб? Или у деревьев, или у креветок? Может быть, похоронив универсальную константу, мы потеряли и право делать какие-либо обобщения за пределами класса млекопитающих?
Не думаю. Я пока не приводил других примеров, потому что ответы на них менее очевидны, ведь млекопитающим и пресмыкающимся уделяли меньше внимания, чем другим животным. Тем не менее подозреваю, что большинство организмов, включая одноклеточных, получают те же выгоды. У более крупных организмов эти выгоды связаны со знакомым нам явлением — оптом дешевле. Как и в обществе, выгода зависит от затрат на установку и эксплуатацию оборудования, торговых издержек и т. д. Все они налагают ограничения на преимущества размера, но в пределах этих ограничений выгода все равно существенна. Дело в том, что живые организмы очень консервативны в принципах своего функционирования. В частности, они всегда имеют модульную организацию. Как отдельные клетки, так и многоклеточные организмы представляют собой мозаику функциональных частей. У многоклеточных дыхание или очищение от шлаков происходит в органах, а у одноклеточных — в органеллах, например в митохондриях. Модульные функции в пределах клетки — это, например, генетическая транскрипция, синтез белков, синтез мембран, закачивание солей, переваривание пищи, распознавание сигналов и реакция на них, производство энергии, перемещение, транспорт молекул и т. д. Думаю, что экономить за счет масштаба на уровне клеток можно не хуже, чем у многоклеточных организмов.
Настало время вернуться к уже затронутой проблеме числа генов. Мы говорили, что сложным организмам нужно больше генов, и обдумали гипотезу Марка Ридли о том, что накоплению генов и усложнению способствовало появление полового процесса. Однако мы видели, что ключ к усложнению — это, скорее всего, не половой процесс, во всяком случае, не он ограничивает число генов у бактерий и одноклеточных эукариот. Интересно, нельзя ли объяснить увеличение числа генов у эукариот с точки зрения энергетической эффективности более крупных клеток? Большие клетки, как правило, имеют большое ядро. Не исключено, что для сбалансированного роста во время клеточного цикла нужно примерно постоянное соотношение объема ядра к объему клетки (еще одна степенная зависимость!).
Это означает, что в процессе эволюции размер ядра, а с ним и содержание ДНК, подстраивается к изменениям объема клетки для обеспечения оптимального функционирования. Значит, по мере увеличения размеров клеток их ядро тоже увеличивается и в нем становится больше ДНК, хотя эта лишняя ДНК необязательно кодирует большее число генов. Это объясняет C-парадокс, который мы обсуждали в главе 1, а также то, почему Amoeba dubia имеет в 200 раз больше ДНК, чем человек, хотя эта ДНК кодирует меньше генов.
Эту лишнюю («избыточную») ДНК часто считают мусором, и действительно, она может быть чисто структурной, но может и выполнять какую-то полезную функцию — от структурной поддержки хромосом до обеспечения участков связывания, регулирующих активность многих генов. Избыточная ДНК также служит сырьем для новых генов, закладывая основы сложности. Последовательности многих генов свидетельствуют, что они произошли от избыточной ДНК. Может быть, происхождение сложности было связано с такой простой вещью, как пропорциональное изменение размера? Как только у эукариотических клеток появились митохондрии, у большого размера появилось селективное преимущество. Большим клеткам нужно больше ДНК, а с ней пришло сырье для большего числа генов и большей сложности. Обратите внимание, что эта ситуация прямо противоположна ситуации у бактерий: жесткое давление отбора заставляет бактерии терять гены, а эукариотам, наоборот, выгодно их приобретать. Если Ридли прав, и половой процесс — способ отсрочить мутационный коллапс, то необходимость иметь больше ДНК при увеличении размера было тем самым давлением отбора, которое и привело к появлению пола.
Для эукариотических клеток обладание митохондриями расширило жизненные возможности. Благодаря им большой размер из абсолютно невероятного стал вполне возможным, что перевернуло с ног на голову ограничения мира бактерий. С большим размером пришла и большая сложность. Но были и недостатки, связанные с конфликтом между митохондриями и содержащей их клеткой. Последствия этой долгой битвы тоже оказались глобальными, оставив на жизни неизлечимые глубокие шрамы, но даже эти шрамы обладали и созидательной и разрушительной силой. Без митохондрий не было бы клеточного самоубийства, но не было бы и многоклеточных особей; не было бы старения, но не было бы и разных полов. У темной стороны митохондрий было даже больше возможностей переписать сценарий жизни.
Часть 5
Убийство или самоубийство?
Трудное рождение индивидуума
Когда клетки тела изнашиваются или повреждаются, они погибают в результате насильственного самоубийства — апоптоза. Клетка распадается на части, они упаковываются и перевариваются. Нарушение механизмов апоптоза приводит к раку — конфликту интересов отдельных клеток и организма в целом. Видимо, апоптоз необходим для обеспечения целостности многоклеточных организмов, но почему независимые клетки согласились на гибель ради высшего блага? Сегодня апоптоз контролируется митохондриями, которые унаследовали машину смерти от своих предков-бактерий. Так неужели целостность индивидуума действительно родилась в борьбе не на жизнь, а на смерть?
Смерть от апоптоза: жить клетке или погибнуть, решают митохондрии
«Я мыслю, следовательно, я существую», сказал Декарт. Так и хочется спросить: «Но что такое я?» Природа индивидуума, долгое время ускользавшая от философов и ученых, начала проясняться только недавно. Можно сказать, что индивидуум — это организм, состоящий из генетически идентичных клеток, которые специализированы для выполнения разных задач на благо организма в целом. С эволюционной точки зрения вопрос стоит так: почему эти клетки обуздали свои эгоистичные интересы и альтруистично сотрудничают в составе организма? Конфликты на разных уровнях организации — между генами, органеллами и клетками — неизбежны, но, как ни парадоксально, без этих междоусобных войн, возможно, никогда не возникли бы прочные связи клеток в пределах особи. Такие конфликты подхлестнули эволюцию молекулярной «полиции», которая обуздывает эгоистичные интересы примерно так, как правосудие обеспечивает приемлемое поведение членов общества. Центральным моментом полицейского контроля в организме является программируемая клеточная смерть — апоптоз. Апоптоз регулируется митохондриями, что наводит на мысль о том, что именно они сыграли ключевую роль в возникновении индивидуума. В этой части книги мы увидим, что в туманной глубине эволюционных времен митохондрии действительно были тесно связаны с возникновением многоклеточных особей.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Энергия, секс, самоубийство"
Книги похожие на "Энергия, секс, самоубийство" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Ник Лэйн - Энергия, секс, самоубийство"
Отзывы читателей о книге "Энергия, секс, самоубийство", комментарии и мнения людей о произведении.