» » » » Жан-Поль Эймишен - Электроника?.. Нет ничего проще!


Авторские права

Жан-Поль Эймишен - Электроника?.. Нет ничего проще!

Здесь можно скачать бесплатно "Жан-Поль Эймишен - Электроника?.. Нет ничего проще!" в формате fb2, epub, txt, doc, pdf. Жанр: Радиотехника, издательство "Энергия", год 1975. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Жан-Поль Эймишен - Электроника?.. Нет ничего проще!
Рейтинг:
Название:
Электроника?.. Нет ничего проще!
Издательство:
"Энергия"
Год:
1975
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Электроника?.. Нет ничего проще!"

Описание и краткое содержание "Электроника?.. Нет ничего проще!" читать бесплатно онлайн.



Книга в занимательной форме знакомит читателя со многими областями одной из наиболее быстро развивающихся в настоящее время наук — электроники. Рассказывается о возможностях использования электроники в промышленности.

Книга рассчитана на широкий круг читателей.






Л. — Изображенная на рис. 51 схема дает очень большое усиление по напряжению. Коэффициент усиления легко подсчитать по формуле

k = S1β2R,

где S1 — крутизна характеристики транзистора T1, β2 — усиление по току транзистора Т2.

Например, при S1 = 12 ма/в, β2 = 50 и R = 500 ом коэффициент усиления по напряжению составит 300.

Если мы вычтем из напряжения U все выходное напряжение Uвых, чтобы приложить между эмиттером и базой транзистора T1 только напряжение U' = U — Uвых, то получим усилитель с коэффициентом отрицательной обратной связи (мы к этому вернемся), равным 300; схема такого усилителя показана на рис. 50.

Входное сопротивление усилителя приближается к мегому (чудовищная величина для классических транзисторных схем), а выходное сопротивление меньше 1,5 ом; коэффициент передачи по напряжению достигает 0,997 (в лучших каскадах, собранных по схеме катодного повторителя, с трудом удается поднять этот показатель до 0,95).

Н. — В самом деле очень соблазнительно, однако эта история для меня не очень ясна. Почему раньше не сделали ее эквивалента в схемах на лампах?

Л. — Незнайкин, найди мне «лампу р-n-р», и я покажу тебе такую схему, но боюсь, что тебе придется очень долго искать. По правде говоря, на лампах можно сделать одну очень сложную схему, основанную на этом же принципе, и которая тоже дает интересные результаты.

Н. — Значит изображенная на рис. 50 схема называется «суперэмиттерный повторитель»?

Л. — Честно говоря, это название дал схеме я сам. Впрочем оно малоизвестно, и я подумываю, не дать ли ей новое и более выразительное название.



Если хотят изменить полярность

Н. — Но мне кажется, что все эти «суперэмиттерные повторители» наделены одним общим недостатком: их выходное напряжение может устанавливаться только в одном направлении; иначе говоря, его нельзя сделать положительным или отрицательным, как нельзя изменить и направление тока, который это напряжение может дать (ведь нельзя же изменить направление тока в лампе или в транзисторе).

Л. — Абсолютно верно, Незнайкин. Следует сказать, что во многих случаях приходится иметь дело с напряжениями, всегда имеющими одну полярность. Если ты пожелаешь сделать лучше, можно использовать «последовательную пушпульную схему». Я не стану описывать эту систему (схему) во всех подробностях, а объясню лишь ее принцип.

Два транзистора включаются последовательно (рис. 52): на коллектор транзистора Т1 подается напряжение питания —Е, а на эмиттер транзистора Т2 — напряжение +E. Со специального фазовращателя на базы подаются соответствующие токи так, чтобы, например, сумма токов коллекторов транзисторов Т1 и Т2 оставалась постоянной. Разность этих токов I1 — I2 проходит через нагрузку, создает напряжение Uвых. Эта разность может быть как положительной, так и отрицательной.



Рис. 52. Последовательный пушпульный каскад. В нагрузку поступает разность токов двух транзисторов.



Н. — Очень ловко придумано. А разве нельзя сделать аналогичное устройство на лампах?


Транзистор-пентод (без экранных сеток)

Л. — Можно, но не так легко. Чтобы лампы работали с хорошей отдачей, рекомендуется использовать пентоды, но возникают проблемы питания цепей экранных сеток. В схеме на транзисторах удается получить еще более низкие выходные сопротивления: при желании можно получить несколько ампер при низком напряжении. Я использовал эту схему для изменения направления вращения ротора маленького двигателя, установленного на управляемой по радио модели корабля. Эту же схему я использовал в своей установке высококачественного воспроизведения звука и получил нужную мощность, которая без выходного трансформатора подается непосредственно на 15-омный громкоговоритель. Если бы ты знал, как я был доволен, когда мне удалось убрать из схемы трансформаторы. Ведь они стоят ужасно дорого, весят много и занимают много места, не говоря уже о вносимых ими искажениях.


Выходное сопротивление и оптимальная нагрузка

Н. — Мы заканчиваем рассмотрение систем, снижающих выходное сопротивление, и я хотел бы задать тебе вопрос. Если выходное сопротивление каскада снизили, например, до одного ома, нужно ли нагрузить его одним омом, т. е. сделать так, чтобы он отдавал свою мощность в нагрузку с сопротивлением 1 ом. Вероятно, сделать такие низкоомные нагрузки трудно?

Л. — Незнайкин, ты меня радуешь. Ты в очень четких выражениях сформулировал ошибочное представление, сложившееся у многих радистов. Твое замечание порождено следующим рассуждением: если от генератора с внутренним сопротивлением rвн хотят получить максимально возможную мощность, то к нему нужно подключить внешнюю нагрузку с точно таким же сопротивлением. Но очень часто случается так, что применить нагрузку  = rвн невозможно — генератор ее не выдерживает. Так, например, батарея с электродвижущей силой 4 в и внутренним сопротивлением 10 ом отдает наибольшую мощность, если к ней подключают лампу, которая в нагретом состоянии имеет сопротивление 10 ом. Напряжение на клеммах батареи упадет до 2 в, по цепи пойдет ток 0,2 а и потребляемая лампой мощность составит 0,4 вт. При подключении другой лампы с сопротивлением меньше или больше 10 ом отдаваемая батареей мощность будет меньше 0,4 вт.

Но рассмотрим случай с аккумуляторной батареей — ее э. д. с. 6 в, а внутреннее сопротивление 0,03 ом (наиболее распространенные значения). Ты не можешь подключить нагрузку с сопротивлением 0,03 ом, так как в этом случае ток должен был бы достичь 100 а (напряжение на клеммах равнялось бы 3 в), а батарея этого не выдержит.

Ты подключишь, например, нагрузку 1 ом, которая потребует б а, а это вполне нормальный ток для аккумуляторной батареи.

Н. — Иначе говоря, в этом случае сопротивление оптимальной нагрузки не равно внутреннему сопротивлению: нагрузка определяется напряжением батареи и максимальным током, который она может дать.



Л. — Абсолютно верно. Ты усвоил принцип, и я могу уточнить некоторые моменты. Так, например, если усилитель, снабженный снижающим выходное сопротивление каскадом, имеет выходное внутреннее сопротивление 1 ом (или меньше), то на каждый отданный в нагрузку ампер выходное напряжение снизится на 1 в (или меньше). Но этот усилитель может быть рассчитан на работу с большим нагрузочным сопротивлением. Например, если его выходное напряжение 15 в, а максимальный допустимый ток 2 а, то для получения максимальной мощности, т. е. тока 2 а при напряжении 15 в, требуется нагрузка сопротивления 7,5 ом.

А когда на сцену выходит отрицательная обратная связь [особенно в каскадах, собранных по схеме катодного (эмиттерного) повторителя], нужно четко разделять: выходное сопротивление, представляющее собой частное от деления изменения напряжения, вызываемого потреблением энергии, на изменение выходного тока; оптимальное сопротивление нагрузки, которое обычно значительно превышает выходное сопротивление и определяется путем деления выходного напряжения на максимально допустимый выходной ток.

Н. — Понял, он должен признаться, что мое собственное внутреннее сопротивление несколько минут тому назад резко повысилось, и я предлагаю перенести продолжение нашей беседы на следующий раз.



Беседа седьмая

СИГНАЛЫ ПРЯМОУГОЛЬНОЙ ФОРМЫ. ОГРАНИЧЕНИЕ. ДИФФЕРЕНЦИРОВАНИЕ И ИНТЕГРИРОВАНИЕ

Незнайкин чрезвычайно обеспокоен: он привык к технике низких частот, где необходимо сохранять форму сигнала, и теперь, наблюдая, как Любознайкин систематически деформирует сигнал, он пришел в полное замешательство. Незнайкин начинает усваивать, что такое ограничение сигнала сверху, как превращают медленное изменение напряжения в скачкообразное, затем он постигает тайны дифференцирующих и интегрирующих схем. Наступает неизбежное (вопреки его желанию и общеизвестному ужасу перед математикой) — его заставляют проглотить определение (упрощенное!) производных и интегралов… и он понимает, что это значительно проще, чем обычно думают.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Электроника?.. Нет ничего проще!"

Книги похожие на "Электроника?.. Нет ничего проще!" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Жан-Поль Эймишен

Жан-Поль Эймишен - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Жан-Поль Эймишен - Электроника?.. Нет ничего проще!"

Отзывы читателей о книге "Электроника?.. Нет ничего проще!", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.