» » » » Жан-Поль Эймишен - Электроника?.. Нет ничего проще!


Авторские права

Жан-Поль Эймишен - Электроника?.. Нет ничего проще!

Здесь можно скачать бесплатно "Жан-Поль Эймишен - Электроника?.. Нет ничего проще!" в формате fb2, epub, txt, doc, pdf. Жанр: Радиотехника, издательство "Энергия", год 1975. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Жан-Поль Эймишен - Электроника?.. Нет ничего проще!
Рейтинг:
Название:
Электроника?.. Нет ничего проще!
Издательство:
"Энергия"
Год:
1975
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Электроника?.. Нет ничего проще!"

Описание и краткое содержание "Электроника?.. Нет ничего проще!" читать бесплатно онлайн.



Книга в занимательной форме знакомит читателя со многими областями одной из наиболее быстро развивающихся в настоящее время наук — электроники. Рассказывается о возможностях использования электроники в промышленности.

Книга рассчитана на широкий круг читателей.






Впрочем, когда я говорил «катод», я должен был сказать «прямонакальный катод», ибо обычно эти лампы бывают с прямым накалом, благодаря чему удается избежать нагрева сетки. Такова конструкция электрометрических ламп, т. е. ламп, позволяющих производить измерение электрических напряжений без потребления энергии.

Н. — Так вот, наконец, что представляют собой эти знаменитые электрометрические лампы, позволяющие пользоваться резисторами утечки с большим сопротивлением. Каковы их характеристики?

Л. — В некоторых моделях удалось снизить сеточные токи примерно до 10-15 а, т. е. до одной миллиардной доли микроампера. Но я должен тебе сказать, что прекрасные результаты можно получить и с обычными лампами, если их несколько меньше нагревать, чтобы снизить температуру сетки, и работать с небольшим анодным током. Таким способом можно легко добиться сеточного тока меньше 10-11 а. И, наконец, стоит сказать об очень любопытном способе получения высокого входного сопротивления — использовании метода перевернутого (обращенного) триода.

Н. — Ты ставишь его ножками вверх?



Л. — Нет, я ставлю его в схему, изображенную на рис. 46. Да, я понимаю твой ужас. Управляющее напряжение подводится отрицательным полюсом к аноду, сеточный ток служит выходным, а на сетку подается положительный потенциал +U. Чем выше отрицательный потенциал анода, тем больше мешает он электронам попасть на положительную сетку, отражая их к катоду. Положительная сетка мешает ионам достичь анода, последний, будучи холодным, не испускает электронов. Таким образом удается получить псевдотриод с чудовищным входным сопротивлением.



Рис. 46. Обращенный триод. Отрицательный анод отталкивает электроны и таким образом снижает сеточный ток ig. Это — электрометрическая схема.


Н. — А его псевдохарактеристики похожи на характеристики обычного хорошего триода?

Л. — Этого только не хватало! Его характеристики похожи на характеристики электрометрического триода, иначе говоря: очень маленькая крутизна (в среднем 0,1 ма/в); малое внутреннее сопротивление (например, 2 ком); низкий коэффициент усиления (0,2).



Усиление по напряжению и по току

Н. — Я абсолютно ничего не понимаю! Ты говоришь мне о малом внутреннем сопротивлении, когда требуются чудовищные входные сопротивления. Затем ты говоришь мне о коэффициенте усиления меньше единицы. Что же я должен делать с такой лампой?

Л. — Сначала я отвечу на твой первый вопрос. Не следует путать входное сопротивление, равное отношению входного напряжения к входному току, с внутренним сопротивлением, равным отношению изменения выходного напряжения к изменению выходного тока. В рассмотренном нами псевдотриоде изменение сеточного напряжения (выход) на 1 в влечет изменение сеточного тока (выходной ток) на 0,5 ма, чему соответствует внутреннее сопротивление 2 ком. Не смешивай с входным током. По вопросу же о коэффициенте усиления я с тобой согласен, что входной каскад на такой лампе выработает значительно меньшее напряжение, чем напряжение, поступающее на его вход.

Но важно другое: ты, например, подаешь на вход напряжение 1 в при входном токе 10-15 а, т. е. 10-15 вт, а на выходе можешь получить напряжение 0,1 в при 0,1 ма или мощность 10-5 вт, т. е. мощность на выходе в 1010 раз больше, чем на входе. Твое «усиление» в 0,1 раза по напряжению соответствует усилению в десять миллиардов раз по мощности. Тебе этого достаточно?

Н. — Я даже могу тебе сказать, что мощность на выходе на 100 дб больше, чем на входе.

Л. — О! Но тем не менее правильно!

Н. — Прошу без особых комплиментов, я всегда такой!



Дрейф

Л. — Подожди минутку, дай мне передохнуть от волнения.

Ну вот, я почти пришел в себя. Теперь, чтобы закончить с этим вопросом, я скажу тебе, что обычно после электрометрических ламп ставят усилители постоянного тока, основная трудность использования которых связана с явлением дрейфа. Если ты не подаешь на вход никакого напряжения, то анодный ток первой лампы может немного измениться из-за изменения накала, напряжения питания, даже из-за старения самой лампы или изменения температуры окружающей среды. В результате происходит медленное изменение выходного напряжения. Обычно его характеризуют дрейфом, приведенным ко входу, т. е. напряжением, которое необходимо подать на вход, чтобы без каких-либо иных причин вызвать наблюдаемое изменение выходного напряжения.

Н. — А сильно ли мешает этот дрейф?

Л. — О, да! И особенно, когда хотят измерить входное напряжение с точностью до милливольта или еще точней (например, в случае измерения pH). Для борьбы с дрейфом пользуются симметричными усилителями.

Н. — Пушпульного типа?

Л. — Довольно похожего. Таким образом удается достаточно хорошо компенсировать дрейф, вызываемый изменением нагрева или напряжения питания, потому что эти изменения одинаково воздействуют на обе лампы каскада, а используется разность их анодных токов. Для получения лучших результатов имеется большое количество усовершенствованных схем, которые ты несомненно увидишь в журнальных статьях. Например, делают усилитель (как с электрометрической, так и с обычной лампой на входе), у которого после 15-минутного прогрева, необходимого для стабилизации режимов, приведенный к входу дрейф меньше 0,1 мв за 24 ч.

Н. — Ну, так эти знаменитые электрометрические усилители не столь уж сложны: специальная лампа на входе (или обычная, но включенная по специальной схеме)… и дело в шляпе.



Проблема изоляции

Л. — Верно, сложность не так велика. Но такие схемы при монтаже требуют аккуратности и соответствующих мер предосторожности. Чтобы при напряжении 1 в токи утечки не превышали 10-15 а, требуется изоляция 1015 ом, а это, позволю тебе заметить, не так легко сделать. Не может быть и речи об использовании в качестве изоляционных материалов бакелита, картона и других широко применяемых материалов. Требуются кварц, хорошее стекло, плексиглас и некоторые пластмассы (полиэтилен, фторопласт). Особенно непримиримо нужно бороться с влажностью. Часто всю электронную часть помещают в герметизированную коробку, содержащую влагопоглотитель; выводы усилителя выходят из этой коробки через изоляционные бусины.

Мне представляется полезным сказать тебе, что коаксиальный кабель с полиэтиленовой изоляцией, если он хорошего качества, обладает достаточной изоляцией для большинства электрометрических измерений. Все другие способы подключения, кроме голого провода, укрепленного на прекрасных изоляторах, следует признать негодными.

А теперь подготовься к эффектному прыжку: с миллиардов мегом на входе до нескольких ом на выходе.



Снижение выходного сопротивления

Н. — Но это «прыжок смерти» или я сам себя не знаю. Как же ты снизишь выходное сопротивление до нескольких ом? С помощью трансформатора?

Л. — В некоторых случаях это возможно, но, как правило, усилители должны иметь такую полосу пропускания, которая исключает использование трансформатора, в особенности, у усилителей постоянного тока. Немного позже ты увидишь, как использование отрицательной обратной связи помогает значительно снизить выходное внутреннее сопротивление усилителя; а пока мы ограничимся лишь одним из способов ее использования, а именно, включением нагрузки в цепь катода или, как иначе называют эту схему, — катодный повторитель.

Н. — О, я достаточно хорошо знаю эту схему в фазосдвигающей системе возбуждения пушпульного каскада. Но я не вижу, как…

Л. — Не торопись, Незнайкин. Речь идет об одном частном случае применения схемы катодного повторителя. Однако изображенная на рис. 47 схема существенно отличается от обычной.



Рис. 47. Катодный повторитель. Результирующее напряжение между сеткой и катодом лампы равно разности входного Uвх и выходного Uвых напряжений.


Как ты видишь, анод лампы непосредственно соединен с положительным полюсом источника питания, между катодом и корпусом включен резистор (с выводов этого резистора я и снимаю выходное напряжение Uвых). Входное напряжение Uвх прикладывается между сеткой и корпусом, создавая на сетке положительное напряжение относительно корпуса и…


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Электроника?.. Нет ничего проще!"

Книги похожие на "Электроника?.. Нет ничего проще!" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Жан-Поль Эймишен

Жан-Поль Эймишен - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Жан-Поль Эймишен - Электроника?.. Нет ничего проще!"

Отзывы читателей о книге "Электроника?.. Нет ничего проще!", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.