» » » » Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.


Авторские права

Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.

Здесь можно скачать бесплатно "Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение." в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство «Де Агостини», год 2014. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.
Рейтинг:
Название:
Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.
Издательство:
«Де Агостини»
Год:
2014
ISBN:
978-5-9774-0730-4
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение."

Описание и краткое содержание "Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение." читать бесплатно онлайн.



В 1881 году французский ученый Анри Пуанкаре писал: «Математика — всего лишь история групп». Сегодня мы можем с уверенностью утверждать, что это высказывание справедливо по отношению к разным областям знаний: например, теория групп описывает кристаллы кварца, атомы водорода, гармонию в музыке, системы защиты данных, обеспечивающие безопасность банковских транзакций, и многое другое. Группы повсеместно встречаются не только в математике, но и в природе. Из этой книги читатель узнает об истории сотрудничества (изложенной в форме диалога) двух известных ученых — математика Андре Вейля и антрополога Клода Леви-Стросса. Их исследования объединила теория групп.






Основная теорема арифметики: любое натуральное число можно представить в виде произведения простых множителей.

Хотя доказать основную теорему арифметики нетрудно, задача о разложении числа на простые множители на практике может оказаться неразрешимой.

89

К примеру, если n представляет собой произведение двух простых чисел р и q приблизительно из 400 знаков каждое, то для разложения n на простые множители даже самым мощным компьютерам потребуется время, сравнимое с возрастом Вселенной. Как вы увидите далее, это один из основных принципов криптографического алгоритма RSA, обеспечивающего безопасность всех наших компьютерных транзакций.

Введем новое понятие: для двух натуральных чисел m и n будем называть наибольшим общим делителем наибольшее натуральное число, на которое делятся одновременно m и n. Обозначим его НОД (m, n). Если нам известны разложения m и n на простые множители, найти НОД очень просто: нужно взять простые числа, которые содержатся в обоих разложениях, возведенные в наименьшую степень. Допустим, что мы хотим найти НОД 50 = 2 · 5² и 120 = 23 · 3 · 5. Общие делители этих чисел — 2 и 5. В первом случае они возведены в степени 3 и 1, во втором — в степени 1 и 2.

Таким образом, НОД будет равен 21 · 51 = 10. Задача о разложении числа на простые множители на практике оказывается неразрешимой, поэтому для очень больших m и n описанный метод неприменим. К счастью, существует еще один метод расчета наибольшего общего делителя, который называется алгоритмом Евклида. Допустим, что m больше n. На первом шаге разделим m на n. Возможны два случая: если остаток от деления равен 0, то n — делитель m, следовательно, n — искомый НОД. В противном случае повторим деление, заменив m на n, а n — на остаток от деления r. Можно доказать, что наибольший общий делитель m и n совпадает с наибольшим общим делителем n и r[8].

Вернемся к нашему примеру: остаток от деления 120 на 50 равен 20, следовательно, на следующем шаге алгоритм нужно повторить для 50 и 20. Остаток от деления 50 на 20 равен 10, поэтому на следующем шаге рассмотрим 20 и 10. На этот раз первое число делится на второе без остатка, таким образом, НОД равен 10. Более того, алгоритм Евклида позволяет получить некоторую дополнительную информацию: если мы рассмотрим последний ненулевой остаток от деления, то сможем записать 10 = 50 — 2·20. Сделаем еще один шаг назад и получим, что 20 = 120 — 2 · 50. Если теперь мы подставим это выражение в первое равенство, то получим отношение с целыми коэффициентами, связывающее

10 = 50-2-(120-2·50) = 5·50-2·120.

90

В общем случае алгоритм Евклида позволяет не только эффективно вычислить наибольший общий делитель чисел, но также показать следующее:

Предложение. Пусть m и n — два натуральных числа. Обозначим их наибольший общий делитель через d. Тогда существуют два целых числа u и v такие, что d = mu + nv.

Особенно интересен случай, когда m и n не имеют общих делителей. Тогда их наибольший общий делитель равен 1, а m и n называются взаимно простыми. Согласно приведенному выше предложению, существуют два целых числа u и v такие, что mu + nv = 1. Это соотношение называется соотношением Безу.

Еще одно фундаментальное свойство делимости чисел звучит так: если число а — делитель произведения bс, и нам известно, что а и b — взаимно простые, то а обязательно будет делителем с. В самом деле, в противном случае один из простых делителей а также будет делителем b, и эти числа не будут взаимно простыми.

С другой стороны, если d — наибольший общий делитель а и b, то существуют два целых числа р и q такие, что а = dp, b = dq. Это утверждение выполняется для любых общих делителей, но так как d — НОД, можно утверждать, что р и q взаимно простые — в противном случае а и b имели бы общий делитель, больший d.

Линейные уравнения

Теперь мы знаем все, что нужно для решения диофантовых уравнений вида ах + by = с,

где а, b и c — произвольные целые числа. Чтобы решить это уравнение, нужно найти все пары целых чисел (х, у), которые удовлетворяют соотношению ах + by = с.

Посмотрим, как это сделать. Обозначим через d наибольший общий делитель а и b. По определению а и b делятся на d, следовательно, выражение ах + by также будет делиться на d. Так как согласно исходному уравнению ах + by = с, число d также должно быть делителем с. Следовательно, если с не делится на d, то уравнение не имеет решений. Так, решений не имеет уравнение 50х + 120у = 7. Мы уже показали, что наибольший общий делитель 50 и 120 равен 10, а 7 не делится на 10.

Далее будем предполагать, что с делится на d.

Тогда мы можем записать а = dp, b = dq и с = dr, где р и q — взаимно простые.

Сначала рассмотрим случай с = 0, то есть однородное уравнение ах + by = 0.

91

Разделив на d первый член уравнения, получим следующее: достаточно решить уравнение рх + qy = 0, или, что аналогично, рх = —qy. Будем рассуждать следующим образом: так как рх равно — qy, qy должно делиться на р. Однако р и q взаимно простые, следовательно, остается единственный вариант: у делится на р, то есть существует целое число Λ такое, что у = Λр. Аналогично доказывается, что х делится на q, поэтому существует другое целое число μ такое, что х = μq. Подставив значения х и у в уравнение, получим: μpq = —Λpq, то есть μ = —Λ, так как pq отлично от нуля. Следовательно, решениями уравнения ах + by = 0 будет пара чисел (q, —р) и всех кратных им чисел (Λq, —Λр).

Теперь предположим, что с отлично от нуля. Если известно два решения (x0, у0) и (х1 y1) уравнения ах + by = с, то:

а(х0 - х1) + b(у0 - у1) = (ах0 + by1-(ax1+by1) = с-с = О,

откуда следует, что (x0 — x1, у0 — y1) — решение однородного уравнения ах + by = 0.

Так как все решения этого уравнения имеют вид (Λq, —Λр), найдется целое число Λ такое, что x0 — x1 = Λq и у0 — у1 = —Λр, или, что аналогично, х = x0 — Λq и y1 = y0 +Λр. Иными словами, уравнение имеет бесконечно много решений, но все они выводятся из частного решения (x0, у0). Напомню, что р и q — результат деления а и b на наибольший общий делитель. Следовательно, мы доказали, что все решения выглядят так:

где (x0, у0) — частное решение, Λ — любое целое число. Теперь всего лишь осталось найти метод, позволяющий получить (x0, у0). Найти эти решения нетрудно, если р и q — взаимно простые, так как по соотношению Безу существуют два целых числа u и v такие, что рu + qv— 1. Умножив u и v на r, получим два числа x0 = ur и у0 = vr такие, что ax0 + by0 = с.

Рассмотрим пример. Допустим, мы хотим решить диофантово уравнение 50х + 120у = 20.

Мы уже знаем, что наибольший общий делитель 50 и 120 равен 10.

Так как 20 делится на 10, уравнение имеет решение.

92

В этом случае в упрощенном виде уравнение выглядит так: 5х + 12у = 2. Найдем числа, которые мы обозначили через u и v. Так как 1 = 5 — 2 ·2 и 2 = 12 — 2·5, имеем

1 = 5 - 2 · (12 - 2 · 5) = 5 · 5 - 2 · 12,

то есть u = 5, v = —2. Умножив эти значения на 2, получим частное решение (10, —4), на основе которого можно найти общее решение:

Краткий экскурс в криптографию

Посмотрим, как диофантовы уравнения используются в системе шифрования с открытым ключом. Напомним, что для данного натурального числа n группа целых чисел со сложением по модулю n состоит из элементов [0], [1], [2]...[n — 1], а сложение выполняется следующим образом: сначала мы складываем элементы группы как обычные числа, затем вычитаем n из полученного результата до тех пор, пока не получим число, заключенное на интервале от 0 до n — 1. Аналогично можно определить операцию умножения. Допустим, n = 7 и нам нужно вычислить произведение 4*5. Сначала умножим эти два числа так же, как и целые числа. Получим 20.

Теперь нужно вычесть из этого результата 7 нужное число раз: после первого вычитания получим 13, после второго — 6, что меньше 7. Следовательно, произведение 4 и 5 по модулю 7 равно 6.

Теперь перейдем к криптографии.

Допустим, что Боб хочет отправить Алисе секретное сообщение. Так как любую информацию можно представить с помощью чисел, достаточно решить задачу о защищенной передаче числа m. Боб знает открытый ключ Алисы (он доступен всем).

У Алисы также есть закрытый ключ, известный только ей. Следует различать три этапа передачи сообщения: генерация ключей, шифрование сообщения и расшифровка.

Сначала покажем, как генерируются ключи. Выберем два простых числа р и q.

В принципе, достаточно, чтобы произведение р и q (обозначим его через n), было больше числа m, которое нужно передать. Но наш метод шифрования будет обеспечивать достаточный уровень защиты только тогда, когда р и q будут достаточно большими и никакой компьютер не будет способен разложить n на простые множители за разумное время. Выберем два простых числа р и р, состоящие из 300—400 знаков.

93

Введем величину r = (р — 1)(q — 1) и выберем число е, меньшее r и взаимно простое с ним. Пара (n, е) будет открытым ключом. Чтобы сгенерировать закрытый ключ, нужно решить диофантово уравнение ex + ry = 1. Если мы обозначим через d первое число из пары, которая является решением этого уравнения, то закрытый ключ будет представлять собой пару (n, d).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение."

Книги похожие на "Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Хавьер Фресан

Хавьер Фресан - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение."

Отзывы читателей о книге "Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.