» » » » Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.


Авторские права

Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.

Здесь можно скачать бесплатно "Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение." в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство «Де Агостини», год 2014. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.
Рейтинг:
Название:
Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.
Издательство:
«Де Агостини»
Год:
2014
ISBN:
978-5-9774-0730-4
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение."

Описание и краткое содержание "Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение." читать бесплатно онлайн.



В 1881 году французский ученый Анри Пуанкаре писал: «Математика — всего лишь история групп». Сегодня мы можем с уверенностью утверждать, что это высказывание справедливо по отношению к разным областям знаний: например, теория групп описывает кристаллы кварца, атомы водорода, гармонию в музыке, системы защиты данных, обеспечивающие безопасность банковских транзакций, и многое другое. Группы повсеместно встречаются не только в математике, но и в природе. Из этой книги читатель узнает об истории сотрудничества (изложенной в форме диалога) двух известных ученых — математика Андре Вейля и антрополога Клода Леви-Стросса. Их исследования объединила теория групп.






Разновидности брака (1,0,0,1)

Клан отцов (1,0,0)

Клан матери (1,1,1)

Клан детей (0,1,1)

Основная причина, по которой мы выбрали эти обозначения из единиц и нулей, заключается в том, что теперь мы можем выразить отношения родства с помощью циклической группы ℤ/2. Чтобы обеспечить максимальную точность, все нули и единицы следовало бы записать в квадратных скобках, но не будем усложнять обозначения. Благодаря выбранной нотации предыдущий пример можно обобщить, применив две леммы, приведенные ниже.

Лемма 1. В браке разновидности (a, b, с, d) жена принадлежит к клану (а, b + 1, c + d)

В самом деле, мужчины, вступающие в брак по правилу (a,b, с, d), принадлежат к клану (a, b, с). Заметим, что вне зависимости от формулы брака представители кланов А и В всегда будут жениться между собой, равно как и представители кланов С и D.

Так как а = 0 для клана А или В, а = 1 для клана С или D, то первое число в обозначении женщины и мужчины будет одинаковым. Посмотрим, что произойдет со вторым числом. Для этого вновь отметим, что вне зависимости от формулы брака мужчины из кланов А и С будут жениться на женщинах из кланов В и D. Следовательно, если b = 0, то второе число в обозначении женщины будет равно 1.

79

Аналогично, мужчины из кланов В и D вступают в брак с женщинами из кланов А и С. Следовательно, если b = 1, то второе число в обозначении женщины будет равно 0. В обоих случаях b заменяется на b + 1, так как 0 + 1 = 1 и 1 + 1 = 0на ℤ/2.

Осталось посмотреть, как изменится третья координата, обозначающая подгруппу клана. Это единственное число, зависящее от формул (I) и (II). В первом случае, то есть при d = 0, все мужчины вступают в брак с женщинами из своей же подгруппы, следовательно, третье число не изменится. Тем не менее, согласно формуле (II), то есть при d = 1, подгруппы меняются, однако это равносильно сложению d с последней координатой. Лемма доказана! Путем аналогичных рассуждений можно определить клан детей в зависимости от клана матери. Докажем:

Лемма 2. Дети женщины клана (х, у, z) принадлежат клану (х + 1, у, х + z + 1).

Теперь, когда мы знаем, как клан женщины определяет разновидность ее брака и как разновидность брака передается от матери к детям, мы можем объединить эти результаты и описать зависимость клана потомков от разновидности брака родителей. Допустим, что дан брак (а, b, с, d). По первой лемме жена принадлежит к клану (а, b + 1, с + d).

Если теперь подставим во вторую лемму х = а, у = b + 1, z = c + d,

то получим, что дети будут принадлежать к клану (а + 1, b + 1, а + с + d + 1).

Имеем:

Лемма 3. Дети от брака разновидности (а, b, с, d) принадлежат к клану (а + 1, b + 1, а + с + d + 1).

ЛЕВИ-СТРОСС: Следовательно, для определения функций f и g нам не хватает одного — правила, описывающего, как выбор формулы (I) или (II) передается по наследству от родителей к детям. Результаты практических исследований показывают, что возможны четыре ситуации:

(1) Дети следуют той же формуле, что и родители.

(2) Дети следуют обратной формуле.

80

(3) Сыновья следуют той же формуле, дочери — обратной.

(4) Дочери следуют той же формуле, сыновья — обратной.

ВЕЙЛЬ: Обозначим каждый из этих случаев двумя индексами (р, q). Если сыновья придерживаются той же формулы, что и родители, то р = 0, в противном случае р = 1; аналогично определяется q для дочерей. Таким образом, четыре упомянутых вами варианта обозначаются (0, 0), (1,1), (0,1) и (1, 0). Обратите внимание, что если брак описывается формулой, которая обозначается координатой d, то сыновья будут следовать правилу d + р, дочери — d + q. Теперь мы можем описать функцию /. Начнем с брака (а, b, с, d). По лемме 3 дети от этого брака принадлежат к клану (а + 1, b + 1, а + с + d + 1). С учетом изложенных выше рассуждений, их формула брака будет равна d 4- р. Следовательно:

f(а, b, с, d) = (а+1, b+1, а + с + d + 1, d + р).

Чтобы определить g, нужно выполнить еще одно действие. Мы знаем, что дочери от брака (а, b, с, d) принадлежат клану (а + 1, b + 1, а + с + d + 1), однако первые три координаты в обозначении брака обозначают не их клан, а их будущего мужа. Следовательно, нужно определить, к какому клану принадлежат мужчины, которые женятся на женщинах из клана (а + 1,b + 1,а + с + d +1)по формуле d + q.

Для этого нам потребуется утверждение, дополняющее лемму 1. Напомню, как звучит эта лемма (сменим обозначения во избежание путаницы):

Лемма 1. В браке разновидности (х, у z, t) жена принадлежит к клану (х, у + 1, z + t).

Мы знаем, что t = d + q, а (х, у + 1, 2 + t) = (а + 1, b + 1, а + с + d + 1), так как к этому клану принадлежит жена. Приравняв координаты, получим систему уравнений:

х = а +1, y + 1 = b + 1, z + d + q = a + c + d + 1,

где мы заменили f на d + q. Первое равенство не требует преобразований, так как значение х известно. Надеюсь, господин Леви-Стросс, что вы не забыли закон сокращения, который я уже объяснял. Если мы применим его к двум последним уравнениям, получим

81

y = b, z + q = a + c + 1.

Мы определили значение у. Чтобы вычислить z, заметим, что в циклической группе ℤ/2 результатом сложения любого элемента с самим собой всегда будет 0, так как 0 + 0 = 1 + 1 = 0. Так, если мы прибавим q к обеим частям равенства, получим z = a + c + q + 1. Таким образом, если женщина из клана

(а + 1, b + 1, а + с + d + 1)

вступает в брак по формуле d + q, ее разновидность брака будет такова:

g(a, b, с, d) = (a+ 1, b, a+ c + q + 1, d + q).

ЛЕВИ-СТРОСС: Теперь я вспомнил, почему мне пришлось обратиться к вам за помощью, господин Вейль.

ВЕЙЛЬ: Следует признать, господин Леви-Стросс, что мне также потребовалось немало времени, чтобы провести эти рассуждения. Важно, что теперь, когда мы определили функции f и g, мы можем автоматически ответить на ваш вопрос о том, как формулы (I) и (II) должны передаваться от родителей к детям, чтобы в следующем поколении мужчина мог жениться на дочери брата своей матери. Мы определили, что это свойство эквивалентно коммутативности композиции f и g. Произведем вычисления. С одной стороны, имеем:

g(f(a, b, с, d))=g(a +1, b + 1, a + c + d + 1, d + p)

= ((a +1) +1, b +1, (a + 1) + (a + c + d + 1)+ q + 1,(d + p) + q)

= (a, b +1, c + d + q + 1, d + p + q),

так как мы можем упростить слагаемые, которые фигурируют дважды в каждой из координат. С другой стороны, применив аналогичные упрощения, получим

f(g(a, b, с, d))=f(a+1, b, a + c + q + 1, d + q)

= ((a +1) +1, b +1, (a +1) + (a + c + q +1) +(d+q)+ 1,(d+q) +p)

= (a, b +1, c + d +1, d + p + q),

Таким образом, должно выполняться следующее условие:

(а, b + 1, c + d + g +1, d + p + g) = (а, b + 1, с + d +1, d + р + q).

82

Так как первая, вторая и четвертая координаты совпадают, необходимо рассмотреть только третью. Согласно закону сокращения из равенства

c + d + g + 1 = c + d + 1

следует, что q = 0. Напомню: это означает, что формула брака дочерей должна быть той же, что и формула брака их родителей. Следовательно, искомое условие выполняется только в тех обществах, где формула брака передается по модели (1) или (4). Иными словами, либо дети обоих полов сохраняют формулу брака родителей, либо же формулу брака родителей сохраняют только дочери, а сыновья следуют обратной формуле. Рассмотрим два этих случая.

В первом случае рассматриваемое общество очевидно является сократимым: так как формулы брака детей и родителей совпадают, разновидности брака, можно сказать, передаются по наследству. Так, племя делится на две части: в первой браки заключаются по формуле (I), во второй — по формуле (II). Как показано в таблице, порядок элементов f и g равен 4, но их квадраты совпадают:

ЛЕВИ-СТРОСС: Это означает, что в этом племени мужчина может жениться на дочери сестры своей матери.

ВЕЙЛЬ: Равенство f² = g² также означает, что группа, порожденная f и g, содержит не 16 элементов, как можно было бы ожидать, а всего 8: е, f, f², f3, g, fg, f²g и f3g. Следовательно, рассматриваемое общество является сократимым. Между прочим, рассматриваемая группа изоморфна группе ℤ/2 х ℤ/4.

ЛЕВИ-СТРОСС: Рассмотрим оставшийся случай, когда дочери придерживаются той же формулы заключения брака, что и родители, сыновья — обратной, следовательно, р = 1, q = 0. Таким образом, функции f и g будут равны:

f(а, b, с, d) = (а+1, b+1, а + с + d+1, d +1), g (a, b, c, d) = (a+1, b, a+c +1, d );

Функция g будет той же, что и в предыдущем случае. Мы уже знаем, что она является функцией четвертого порядка. Вычислим порядок функции f. Для этого применим ее несколько раз, пока не получим тождественное преобразование. Если я не ошибаюсь, достаточно применить ее дважды:

83

f²(а, b, с, d) = f(а+1, b+1, а+с+d+1, d+1)

= ((а+1)+1, (b+1)+1,(a+1) + (a+c+d+1)+(d+1)+1,(d+1)+1)

= (а, b, с, d),

а также использовать упрощения, которые вы продемонстрировали выше.

Более того, f и g независимы, следовательно, порожденная ими группа изоморфна группе ℤ/2 х ℤ/4. Этого достаточно, чтобы доказать: рассматриваемое племя является несократимым, так как в группе ℤ/2 х ℤ/4 недостаточно элементов восьмого порядка для преобразования 16 разновидностей брака между собой.

ВЕЙЛЬ: Поздравляю вас, господин Леви-Стросс! Вы все поняли! В этом случае также можно показать, что общество является сократимым, применив новый, более прямой метод, который я вам сейчас объясню. Рассмотрим брак вида (а, b, с, d). Согласно нашим расчетам, сыновья от этого брака вступят в брак по правилу (a +1,b +1,a + c + cf +1,cf +1).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение."

Книги похожие на "Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Хавьер Фресан

Хавьер Фресан - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение."

Отзывы читателей о книге "Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.