Жозе Фаус - Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?"
Описание и краткое содержание "Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?" читать бесплатно онлайн.
В течение многих лет Вернер Гейзенберг считался одним из самых демонических представителей западной науки. И это неудивительно, ведь именно он стоял во главе нацистской ядерной программы, к счастью, безуспешной. И все же сотрудничество ученого с преступным режимом не заслонило его огромный вклад в науку. В 1925 году Гейзенберг обобщил беспорядочное на первый взгляд скопление наблюдений в сфере квантовой физики за предыдущие десятилетия, а через два года вывел свой знаменитый принцип неопределенности. Ученый заявил, что наблюдатель влияет на созерцаемую им реальность. Этот принцип и выводы, из него следующие, заставили недоумевать многих ученых, в том числе и Эйнштейна, который, протестуя, писал: «Мне хотелось бы думать, что Луна существует, даже если я на нее не смотрю».
Однако как представить себе электрон, вращающийся вокруг себя? Если электрон подобен точке, то как понимать вращение точки вокруг себя? Если же электрон имеет размер, то скорость точки на экваторе электрона превысит скорость света. Также возникает вопрос, почему электрон не взрывается под действием сил отталкивания между его частями. Аналогии с классической физикой приводили и к другим проблемам подобного рода. Следовало предположить, что спин – это еще одно свойство электрона, подобное его массе, электрическому заряду или магнитному моменту Гейзенберг смог прояснить одно интересное свойство атома гелия. Анализ его спектра выявил существование двух разных последовательностей линий спектра. Ученый посчитал, что, возможно, существуют две разновидности гелия, которые назвал парагелием и ортогелием. Расскажем, как рассуждал Гейзенберг. Сначала он заметил, что электроны неразличимы между собой. Следовательно, волновая функция множества идентичных электронов должна обладать какими-либо свойствами симметрии, отражающими эту особенность электронов.
Опасность классических аналогий
Классические аналогии помогают понять квантовую физику, однако их буквальное применение становится причиной противоречий. В качестве примера приведем сравнение спина электрона с вращательным движением электрона вокруг оси. Рассмотрим сферу с радиусом R и массой М, которая вращается вокруг своей оси с угловой скоростью со (угловая скорость определяется как число оборотов в единицу времени). Скорость точки на экваторе сферы рассчитывается как произведение угловой скорости и радиуса сферы V = ω•R. Момент импульса, связанного с вращательным движением (он представляет собой вектор, сонаправленный с осью вращения), можно записать как произведение момента инерции сферы
и угловой скорости: L = l•ω. Таким образом, мы можем связать скорость точки на экваторе сферы с моментом импульса вращения:
Подставим в указанную формулу параметры электрона и рассмотрим значение скорости. Если мы свяжем момент импульса со спином электрона, то получим L =h/2. В международной системе единиц (метрах, килограммах и секундах) h = 1034 и М = 9•1031 . Чему может быть равно значение R? Оно должно быть меньше размера атома и меньше фемтометра (1015 м) – именно такие размеры имеет ядро атома. Подставив эти числа в предыдущее выражение, получим, что скорость точки на экваторе будет более чем в 500 раз превышать скорость света в вакууме.
Если же принять, что радиус электрона еще меньше, то скорость точки на его экваторе будет еще больше. Иными словами, если сравнить спин электрона с вращением тела вокруг своей оси, то результат будет противоречить теории относительности – никакое тело не может двигаться со скоростью, превышающей скорость света в вакууме. Таким образом, результаты квантовой механики не всегда можно истолковать, основываясь на классических аналогиях.
Гейзенберг обнаружил, что волновая функция должна быть антисимметричной (иными словами, она должна менять знак) при замене двух идентичных электронов, так как только в этом случае будет выполняться принцип Паули.
Допустим, что электроны могут находиться в двух квантовых состояниях, которые мы обозначим буквами a и b. Волновую функцию можно будет записать как a(1)b(2), иными словами, электрон 1 будет находиться в состоянии a, электрон 2 – в состоянии b. Но так как электроны 1 и 2 идентичны, различие между ними произвольно: мы могли записать волновую функцию в виде а(2) b(1). Наиболее общим представлением волновой функции будет линейная комбинация обоих вариантов, то есть два выражения:
a(1)b(2) + a(2)b(1)
и
a(1)b(2)-а(2)b(1),
которые отличаются между собой только знаком. Если мы поменяем местами индексы 1 и 2 или состояния a и b, то в первом случае получим ту же линейную комбинацию, во втором – ту же линейную комбинацию, но с противоположным знаком. Эти комбинации называются симметричной и антисимметричной к смене индексов частиц и состояний соответственно. Какое из этих двух выражений удовлетворяет принципу Паули? Если мы рассмотрим два электрона в одинаковом состоянии, то результат антисимметричной комбинации будет равен нулю. По всей видимости, именно в ней учитывается принцип Паули. Этот простой пример иллюстрирует более общий результат для системы из множества электронов: волновая функция этой системы должна быть антисимметричной, то есть менять знак при смене индексов любых двух электронов.
Вернемся к атому гелия и уточним описанные выше обозначения. Волновая функция каждого электрона представляет собой произведение пространственной части, в которой для обозначения трех квантовых чисел используются буквы n и m, и спиновой части. Для обозначения пространственной части волновой функции используем греческую букву φ(фи) и будем записывать φn(1) и φm(2). В спиновой части два возможных состояния спина обычно обозначаются греческими буквами альфа и бета, поэтому будем записывать α(1) и β(2).
Волновая функция для двух электронов будет записываться так:
φm(1)φn(2)α(1)β(2) – φm(2)φn(1)α(2)β(1).
Это в самом деле антисимметричная комбинация: при смене индексов электронов мы получим тот же результат, но с противоположным знаком. Кроме того, если обозначения состояний равны, итоговый результат равен нулю. Таким образом, принцип Паули выполняется.
Данному принципу удовлетворяет и следующая линейная комбинация:
[φm(1)φn(2) + φm(2)φn(1)] • [α(1)β(2) – α(2)β(1)].
Это произведение симметричной комбинации пространственных частей и антисимметричной комбинации спиновых частей. Аналогично определяется следующая комбинация:
[φm(1)φn(2) – φm(2)φn(1)] • [α(1)β(2) + α(2)β(1)].
Она обладает обратными свойствами симметрии и определяется как произведение антисимметричной комбинации пространственных частей на симметричную комбинацию спиновых частей. Можно убедиться, что суммы этих двух новых линейных комбинаций за исключением общего множителя равны первой волновой функции, записанной нами для двух электронов. Однако новый способ записи содержит больше физической информации. Гейзенберг показал, что эти новые выражения описывают два разных множества состояний атома гелия, а именно линии спектра парагелия и ортогелия. В первом случае спиновая часть антисимметрична и соответствует синглетному состоянию – единственному состоянию общего спина. В примере с ортогелием спиновая часть симметрична, что соответствует триплетному состоянию, то есть трем возможным состояниям с одним и тем же значением общего спина. Следовательно, загадка двух видов гелия объясняется, если мы рассмотрим спин электрона: два вида гелия соответствуют двум возможным сочетаниям этих спинов.
Гейзенберг применил эти же идеи при изучении молекулы водорода, содержащей два протона и два электрона, и предсказал существование двух форм водорода, которые также назвал параводородом и ортоводородом. Они были открыты в 1929 году. Это два состояния молекулы с различным общим спином, которые сосуществуют при определенной температуре окружающей среды. Соотношение параводорода и ортоводорода равно 1:3. Как указано в заявлении Нобелевского комитета, Гейзенберг получил Нобелевскую премию по физике «за создание квантовой механики, применение которой привело, в частности, к открытию аллотропных форм водорода».
Квантовая неопределенность
В мае 1926 года Гейзенберг вернулся в Копенгаген – ему предстояло провести целый год в роли помощника Нильса Бора. К этому времени он уже достаточно хорошо говорил по-датски, чтобы преподавать. Бор был рад его возвращению и в письме к Резерфорду сообщал: «Приехал Гейзенберг, и все мы очень заняты обсуждением нового пути развития квантовой механики и перспектив, которые она открывает перед нами».
Как-то раз немецкий посол в Копенгагене пригласил Гейзенберга в свою резиденцию на музыкальный вечер – один из его сыновей, Карл Фридрих фон Вайцзеккер, интересовался физикой и захотел увидеть талантливого ученого. Гейзенберг постоянно общался с юными скаутами, поэтому легко завязал дружеские отношения с сыном посла, хотя тот был на 10 лет младше и учился в средней школе. Много лет спустя Вайцзеккер защитил докторскую диссертацию под руководством Гейзенберга и стал одним из его немногих близких друзей.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?"
Книги похожие на "Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Жозе Фаус - Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?"
Отзывы читателей о книге "Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?", комментарии и мнения людей о произведении.