» » » » Борис Бирюков - Жар холодных числ и пафос бесстрастной логики


Авторские права

Борис Бирюков - Жар холодных числ и пафос бесстрастной логики

Здесь можно скачать бесплатно "Борис Бирюков - Жар холодных числ и пафос бесстрастной логики" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Издательство "Знание", год 1977. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Борис Бирюков - Жар холодных числ и пафос бесстрастной логики
Рейтинг:
Название:
Жар холодных числ и пафос бесстрастной логики
Издательство:
Издательство "Знание"
Год:
1977
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Жар холодных числ и пафос бесстрастной логики"

Описание и краткое содержание "Жар холодных числ и пафос бесстрастной логики" читать бесплатно онлайн.



Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.






61

2. См. об этом в кн.: В. Н. Молодший. Очерки по философским вопросам математики. М., 1969, ч. II, гл. 2.

62

3. Конечную дробь, то есть (периодическую) дробь с «хвостом» из одних нулей (например, 3,14000...) при этом заменяют бесконечной периодической дробью с девяткой в периоде (в нашем примере— дробью 3,13999...).

63

4. Если действительное число есть рациональное число, то есть если десятичная дробь является периодической, то с бесконечностью можно «справиться» тривиальным способом, рассматривая число как дробь p/q, где p и q — целые числа, а q отлично от нуля.

64

5. E. Т. Веll. Men of Mathematics. N. Y., 1962. p. 431.

65

6. С теорией Дедекинда можно подробнее познакомиться по изложению автора. См.: Р. Дедекинд. Что такое числа и для чего они служат. Казань, 1905.

7. См. Г.М. Фихтенгольц. Основы математического анализа. Т. 1. М., 1960, с. 17.

66

8. Априори возможен еще случай, когда в левом классе есть наибольшее число, а в правом — наименьшее. Однако нетрудно показать, что такой случай противоречит свойствам сечения.

67

9. См. об этом подробнее в кн. В. Н. Молодшего, указанной в примечании 2.

68

10. Б. Рассел. История западной философии. М., 1959, с. 56.

69

11. Цитируется по кн.: Н. Бурбаки. Очерки по истории математики. М., 1963. с. 29.

70

12. См. об этом в кн.: История математики. Т. 1. М., 1970, с. 292 и далее.

71

13. См. статью Л. Кальмара, указанную в примечании 13 к гл.1, е.188,

72

14. С основными идеями Г. Кантора можно ознакомиться по трем его работам, имеющимся в русском переводе (опубликованы в издании:

Новые идеи в математике. Вып. 6. Спб, 1914).

73

15. С. К. Клини. Введение в метаматематику. М., 1957, с. 14.

74

16. Этот результат был в определенном смысле обобщением следующего свойства конечных множеств. Пусть дано, скажем, множество из трех элементов М = {а, b, с}. Помимо пустого множества, по определению входящего во всякое множество, и самого множества M, входящего в самое себя, в нем содержатся следующие подмножества: {а}, {b}, {с} {а, b}, {а, с}, {b, с}; таким образом, множество всех подмножеств множества из трех элементов содержит 8, или 23 элементов. Легко доказать, что если исходное множество содержит n элементов, то множество всех его подмножеств будет содержать 2n элементов. Поэтому в случае конечных множеств количественное превосходство производного множества над исходным очевидно. Но когда речь идет о бесконечных множествах, вопрос становится не таким просты»: Кантор доказал, что и в этом случае производное множество превзойдет исходное; правда, здесь уже нельзя будет сказать, что в нем окажется больше элементов — и там и там их бесконечно много, а следует говорить, что оно обладает большей мощностью. Термин «мощность» Кантор определил математически строго. См. гл. I книги С. К. Клини, указанной в примечании 15.

75

17. G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle, 1879; G. Frege. Grundgesetze der Arithmetik, begriffsschrift lich abgeleitet. Bd. I, Jena, 1893; Bd. II, Jena, 1902:

Общую характеристику вклада Фреге в логику и основания математики см. в статье Б. В. Бирюкова «О работах Фреге по философским вопросам математики», помещенной в сборнике «Философские вопросы естествознания», вып. 2, [М], 1959.

76

18. В рассмотренном нами в гл. 3 исчислении равенств это были знаки → и ≡.

77

19. При этом в интерпретациях этого исчисления — если не иметь в виду интуиционистскую и подобные ей «неклассические» логики, о которых пойдет речь ниже, присутствуют булевы алгебры.

78

20. В построении самого Фреге фигурировали не схемы аксиом, а конкретные аксиомы, в связи с чем в числе постулатов имелось еще одно правило вывода — так называемое правило подстановки. Однако мы следуем его системе лишь в самых общих- чертах. Заметим, что символика Фреге резко отличалась от обычной линейной логической и математической символики. Она носила «рисунчатый» характер и не привилась.

79

21. Используя «родство» эквиваленции (которую без труда можно ввести в исчисление Фреге) с отношением равенства и согласовав выразительные средства этого исчисления со-средствами описанного в гл. 3 исчисления равенств (равносилъноетей) формул, можно показать, что эти исчисления в определенном смысле переводимы друг в друга — имеют одинаковую дедуктивную силу.

80

22. Ниже излагается лишь общая идея фрегевского определения натуральных чисел. Полностью изложить его подход здесь, разумеется, не представляется возможным.

81

23. Об определении натуральных чисел как конечных кардинальных чисел (по Кантору) см., например: Н. Бурбаки. Теория множеств. М., 1965, с. 197 и далее.

81

24. J. van Heienoort. From Frege to Godel. A Source Book in Mathematical Logic. Cambridge (Mass.), 1967, p. 124—125.

82

25. Под идеографией Рассел имеет в виду логическую символику.

83

26. В теории Фреге предикаты рассматривались как частный случай функций, а именно, как функции, принимающие в качестве своих значений значения «истинно» и «ложно». Эта точка зрения на предикаты общепринята и в настоящее время при содержательном исследовании закономерностей «мира свойств и отношений».

84

27. Имеется в виду книга Б; Рассела «Принципы математики», которая вышла два года спустя(В. Russell. The Principles of Mathematics. Cambridge (Engl.), 1993).

85

28. Этими словами начинается послесловие Фреге ко второму тому «Основных законов арифметики» (с. 253).

86

29. X. Б. Карри. Основания математической логики. М., 1969, с. 32.

87

30. См. L. Kreiser. Geschichte und logisch-semantische Probleme des wissenschaftlichen Werkes Fregess. In: G. Frege. Schriften zur Logik. Aus dem Nachlaβ. Berlin. 1973.

88

31. Это стало известно после опубликования первого тома научного наследства Фреге: G. Frege. Nachgelassene Schriften. Bd. I. Hamburg, 1969. В рецензии на эту книгу, написанной Б. В. Бирюковым и Н. Н. Нуцубидзе и помещенной в издании «Новые книги за рубежом по общественным наукам», 1974, 6, читатель найдет рассказ об эволюции взглядов Фреге под конец жизни и о судьбе его научного наследия, в известном смысле разделившего научную трагедию Фреге.

89

32. Это была известная «теория тинов», разработанная Расселом еще до публикации «Principia Mathematica». О теории типов см. книгу С. К. Клини, указанную в примечании 15.

90

33. Следует вместе с тем заметить, что труд А. Н. Уайтхеда и Б. Рассела (A. N. Whitehead, B. Russell. Principia Mathematica. Vol. I, 1910; vol. II, 1912; vol, III, 1913, Cambridge, Engl.) явился важной: вехой в развитии математической логики и оснований математики. От него в знаяительной мере отправляются последующие работы в этой области, в частности исследования К. Гёделя (см. ниже).

91

1. Развертывание своей философско-матемагической платформы Брауэр начал со статьи «Недостоверность логических принципов», опубликованной в 1908 г. на голландском языке. Хорошее представление о взглядах Браузра дает кн.: Г. Веиль. О философии математики. М.-Л. 1934.

92

2. «Всякая наука. - считал Р. Декарт, заключается в достоверном и очевидном познании, которое есть деятельность интеллекта. Возможны только два действия интеллекта, «посредством которых мы можем придти к познанию вещей, не боясь никаких ошибок, это интуиция и дедукция, «поэтому из всех наук только математика чиста «от всего ложного и недостоверного»,; опытное же познание «часто вводит вас в заблуждение» (Р. Декарт. Набранные произведения. [М.]» 1950, с. 81—86). О параллелях между взглядами Декарта и философскими установками Брауэра см. ниже.

93

3. Что обе они не могут -выполняться— это гарантируется законом противоречия. Этот закон Брауэр не ставил под сомнение.

94

4. Но позиция Брауэра позволяет заключать от отвержения альтернативы α, например, путем приведения ее к абсурду, к верности высказывания ~α (этот способ рассуждения признает и конструктивизм, генетически связанный с брауэровской критикой классической математики и логики).

95

5. Цитируется по кн.: E.W. Beth. The Foundations of Mathematics. A Study in the Philosophy of Science. Amsterdam, 1965. p. 618—619.

96

6. Р. Декарт. Избранные произведения, с. 86.

97

7. См., например: Ж. Пиаже. Избранные психологические труды. [М.], 1959.

98

8. А. А. Марков. Комментарии.—В кн.: А. Рейтинг. Интуиционизм. Введение. М., 1965, с. 162.

98

9. При интуиционистской — не связанной с понятием алгоритма — трактовке конструктивности.

99

10. Мы набросали лишь идею доказательства. Точную формулировку теоремы и полное ее доказательство можно найти, скажем, в кн.:


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Жар холодных числ и пафос бесстрастной логики"

Книги похожие на "Жар холодных числ и пафос бесстрастной логики" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Борис Бирюков

Борис Бирюков - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Борис Бирюков - Жар холодных числ и пафос бесстрастной логики"

Отзывы читателей о книге "Жар холодных числ и пафос бесстрастной логики", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.