» » » » Борис Бирюков - Жар холодных числ и пафос бесстрастной логики


Авторские права

Борис Бирюков - Жар холодных числ и пафос бесстрастной логики

Здесь можно скачать бесплатно "Борис Бирюков - Жар холодных числ и пафос бесстрастной логики" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Издательство "Знание", год 1977. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Борис Бирюков - Жар холодных числ и пафос бесстрастной логики
Рейтинг:
Название:
Жар холодных числ и пафос бесстрастной логики
Издательство:
Издательство "Знание"
Год:
1977
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Жар холодных числ и пафос бесстрастной логики"

Описание и краткое содержание "Жар холодных числ и пафос бесстрастной логики" читать бесплатно онлайн.



Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.






Из всего сказанного вытекает, что любой вычислительный процесс, потенциально осуществимый с помощью аппарата рекурсивных функций, потенциально осуществим также и на ЭВМ. Уточним, в каком смысле нужно поймать слово «потенциально» в применении к вычислительной машине.

Для рекурсивного аппарата этот термин, как мы выяснили, можно понимать так: «при условии, что имеется достаточно времени, чернил (или типографской краски) и бумаги для записи промежуточных данных». ЭВМ бумага для записи данных не нужна — она заносит их в магнитное или другое «физическое» запоминающее устройство, а время ей нужно так же, как и человеку, вооруженному авторучкой, несмотря на то, что ЭВМ производит вычислительные действия гораздо быстрее. Поэтому потенциальная осуществимость какого-то вычислительного процесса на ЭВМ должна пониматься как осуществимость при условии, что не будет наложено никаких ограничений на время работы машины и что машина имеет неограниченную память — память, которую в случае надобности можно всегда расширить путем добавления, например, нового магнитного барабана.

Будем называть вычислимость такого рода ЭВМ-вычислимостью. Как мы убедились, ЭВМ-вычислимость включает в себя рекурсивную вычислимость. Конечно, аргументы, приводившиеся в пользу этого утверждения, носили описательный характер. Однако его можно превратить в серию аналогичных утверждений, в каждом из которых будет фигурировать не ЭВМ «вообще», а ЭВМ некоторого данного типа (или класс ЭВМ, программируемых с помощью конкретного алгоритмического языка, скажем, языка АЛГОЛ-68).

Любое из утверждений такого рода может быть доказано вполне строго. Возникает вопрос: является ли ЭВМ-вычислимость более мощной, чем рекурсивная вычислимость, то есть может ли вычислительная машина сделать что-нибудь такое, чего нельзя сделать с помощью аппарата рекурсивных функций? Если строго рассмотреть этот вопрос, окажется, что он получает отрицательный ответ. ЭВМ-вычислимость эквивалентна рекурсивной вычислимости, а значит, эквивалентна также алгорифмической вычислимости (по Маркову) и вычислимости по Тьюрингу.

Как звучит соответствующий тезис? Очевидно, так: всякая конечная вычислительная (в частности, логическая, дедуктивная) процедура, характеризующаяся детерминированностью своего выполнения, может быть осуществлена на цифровой вычислительной машине с достаточно большой памятью за достаточно большое время.

Эквивалентность этого утверждения, которое можно назвать тезисом кибернетики, остальным рассмотренным нами тезисам является сильным аргументом в их пользу. Ведь «на мельницу» кибернетического тезиса ежедневно и ежечасно «льет воду» практика программирования и вычислительная работа на ЭВМ, а из-за эквивалентности всех четырех тезисов мы можем сказать, что вода попадает и на три остальные мельницы. За 20 с лишним лет широкого применения вычислительной техники в самых разнообразных областях науки, техники, медицины, планирования, управления, прогнозирования и т. д. не было ни одного случая, чтобы задача, четко сформулированная на естественном или формализованном языке, сформулированная с помощью таблиц, графиков, номограмм, схем — самыми разнообразными путями и методами и не выходящая за разумные рамки в смысле трудоемкости требующихся для ее решения операций, не смогла быть записана в виде машинной программы.

Другими словами, не было случая, чтобы к математику, умеющему ставить задачи и программировать их для ввода в ЭВМ, пришел представитель какой-либо нематематической профессии — администратор, экономист, инженер, деятель искусства, ученый и т. д.— попросил бы его осуществить на машине процесс полностью детерминированного на каждом этапе вычисления, логического вывода, выделения некоторого объекта из некоторого множества объектов, расчета вариантов, выбора одних гипотез и исключения других и т. д., то есть процесс решения ясно и четко поставленной задачи из какой-то области деятельности, и чтобы математик совершенно ясно понял проблему, но ответил заказчику, что ее в принципе нельзя решить на ЭВМ. В худшем случае математик может ответить так: программа, соответствующая вашей задаче, на данной машине не пройдет, поскольку у машины слишком мал объем памяти и она слишком медленно работает, чтобы получить результат за разумное время.

Перефразируя выражение А. А. Маркова, заметим, что это, как-никак, веский аргумент. Пусть практика работы на ЭВМ насчитывает не 4000, а лишь 20— 25 лет, но какая это практика! Чего только ни делали с помощью ЭВМ — и составляли планы отраслей хозяйства, и находили выгоднейшие варианты перевозок, и играли в различные игры, но ни единого раза проблема, если она была четко поставлена, не упиралась в тот барьер, что для нее в принципе невозможно написать программу. Можно ли, однако, сказать, что все четко поставленные, но не решенные до сих пор на ЭВМ проблемы (или такие проблемы, относительно которых имеется уверенность, что их со временем можно поставить четко) просто ждут своей очереди: того дня, когда быстродействие и память «компьютеров» станут достаточно большими?

В качестве примера рассмотрим программирование на ЭВМ шахматной игры. Шахматы часто справедливо сравнивают с искусством, и для этой древней игры придумали даже свою «музу» — Каиссу. Широко известны многочисленные попытки моделировать процесс шахматного мышления на машине; их пока нельзя признать успешными, поскольку самые удачные шахматные программы значительно уступают мышлению хороших шахматистов. Каковы, однако, перспективы «машинных шахмат»?

Тезис кибернетики утверждает, что всякий детерминированный процесс, сущность которого можно объяснить человеку, потенциально осуществим машиной, то есть будет фактически выполнен на ЭВМ, которой предоставлено неограниченное время и которая имеет неограниченную память[4]. Первое условие можно переформулировать как условие достаточного быстродействия, поэтому данный тезис можно выразить еще и так: процесс, о котором сказано выше, всегда можно фактически выполнить на машине с достаточно высоким быстродействием и обладающей достаточно емким запоминающим устройством. Если бы такая машина существовала, то «шахматная проблема» давно была бы решена.

Программа для ее решения не представляет трудности; идея такой программы была выдвинута одним из основателей кибернетики Клодом Шенноном больше двадцати лет назад[5]. Соответствующий метод называется «построением дерева игры», и смысл его заключается в следующем. Выписываются все варианты первого хода белых; для каждого из них выписываются все пары ходов, состоящие из текущего первого хода белых и возможного, допустимого правилами игры ответного хода черных (то есть с каждым возможным ходом белых сопоставляются по очереди все возможные ходы черных, включая нелепые); затем с каждым ходом черных сопоставляются по очереди все возможные ходы белых и так далее. Если изобразить это на диаграмме, возникает ветвящееся «дерево» (отсюда и название метода). Ветви будут обрываться на ходах, ведущих к поражению одной из сторон или ничейным ситуациям.

Построив такое дерево, можно проанализировать его, идя обратным путем — от концов веток к корню дерева, и установить, имеется ли такой первый ход белых, что, какой бы ни сделали черные ответный ход, существует такой второй ход белых, что, какой бы ни сделали второй ход черные, можно будет найти такой третий ход белых... и т. д., что черные терпят поражение. Если такой первый ход существует и тот, кто начинает игру, знает свойства ее дерева, он будет выигрывать в ста процентах случаев, независимо от того, знает ли свойства дерева игры его противник. Если такого первого хода не существует, то сторона, делающая первый ход, может выиграть только при условии, что противник не знает дерева игры и вследствие этого делает слабые ходы. Если черные знают свойства дерева игры, то тоже возможны различные ситуации. Быть может, в этом случае черные, опираясь на свойства дерева игры, при любых ходах белых могут обеспечить себе ничейный результат. Но этого может и не быть — это будет означать, что шахматы есть игра, в которой белые при абсолютно правильной игре всегда выигрывают[6].

Однако в любом случае ясно, что шахматы в принципе, так сказать, запрограммированы — несложные правила движения фигур и характеристика матовых ситуаций без труда переводятся на язык элементарных действий, доступных ЭВМ. Будь машины более быстродействующими и имей они достаточно большую память, они просчитали бы все варианты игры и запомнили все ее дерево, превратившись в «абсолютных» шахматистов. Эта игра в таком случае потеряла бы «интеллектуальный» интерес как объект исследования, подобно играм в «волки и овцы» и «крестики и нолики», свойства которых известны: в первой игре всегда выигрывают овцы, если они играют правильно, а во второй игре при наилучшей стратегии сторон всегда имеет место ничья.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Жар холодных числ и пафос бесстрастной логики"

Книги похожие на "Жар холодных числ и пафос бесстрастной логики" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Борис Бирюков

Борис Бирюков - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Борис Бирюков - Жар холодных числ и пафос бесстрастной логики"

Отзывы читателей о книге "Жар холодных числ и пафос бесстрастной логики", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.