» » » » Генри Дьюдени - 200 знаменитых головоломок мира


Авторские права

Генри Дьюдени - 200 знаменитых головоломок мира

Здесь можно скачать бесплатно "Генри Дьюдени - 200 знаменитых головоломок мира" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство ООО "Фирма "Издательство ACT", год 1999. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Генри Дьюдени - 200 знаменитых головоломок мира
Рейтинг:
Название:
200 знаменитых головоломок мира
Издательство:
ООО "Фирма "Издательство ACT"
Год:
1999
ISBN:
5-237-02035-6
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "200 знаменитых головоломок мира"

Описание и краткое содержание "200 знаменитых головоломок мира" читать бесплатно онлайн.



Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.

Книга несомненно доставит большое удовольствие всем любителям этого жанра.






92. Четыре поросенка. Каждого из четырех поросят помещают в отдельный свинарник таким образом, что хотя каждый из 36 свинарников расположен на одной прямой (горизонтальной, вертикальной или диагональной) по крайней мере с одним поросенком, все же ни один поросенок не находится на одной прямой с другим. Сколько существует различных способов распределить поросят по свинарникам при этих условиях? Повернув рисунок, вы получите еще три расположения, а сделав это перед зеркалом, получите еще четыре. Эти расположения мы не считаем различными.

93. Пронумерованные кубики. Дети, которых вы видите на рисунке, нашли, что с помощью пронумерованных кубиков можно придумать много поучительных и интересных головоломок. Имеется десять кубиков, на каждом из которых нанесена одна цифра — 1, 2, 3, 4, 5, 6, 7, 8, 9, 0. В данный момент дети заняты головоломкой, в которой требуется разделить кубики на две группы, по пять кубиков в каждой, а затем расположить их так, что если в каждую из групп поставить в надлежащем месте знак умножения, то получатся произведения, одинаковые в каждой группе. Число возможных решений весьма значительно, но дети нашли такое решение, при котором произведение оказалось наименьшим из возможных. Так, если 3485 умножить на 2, то получится 6970, и это же произведение получится при умножении 6970 на 1. Вы обнаружите, что вполне посильно найти любой меньший результат.

Моя головоломка состоит в том, чтобы отыскать результат, наибольший из возможных. Разбейте кубики на любые две группы, по пять кубиков в каждой, и поставь те в нужных местах знак умножения, чтобы при этом одинаковое произведение в каждой группе оказалось максимальным. Вот и все, но этот орешек не так-то легко раскусить. Разумеется, не разрешается использовать дроби или применять какие-либо иные трюки. Головоломка в той достаточно простой форме, в которой я ее предлагаю, довольно интересна. Быть может, следует добавить, что множители могут быть двузначными.

94. Лисы и гуси. Вот небольшая головоломка с фишками, которую читатель, наверное, найдет занимательной. Сделайте диаграмму любого удобного размера, подобную той, что показана на рисунке, и возьмите шесть фишек: три из них изображают лис, а три другие — гусей. Поставьте гусей на кружки 1, 2 и 3, а лис — на кружки 10, 11 и 12.

Головоломка состоит в следующем. Передвигая поочередно по одной фишке (то лис, то гусей) вдоль прямой от одного кружка к следующему, попытайтесь провести лис на кружки 1, 2 и 3, а гусей — на кружки 10, 11 и 12 (то есть поменяйте их местами) за наименьшее возможное число ходов.

Но при этом вы должны быть внимательны и не позволять лисам и гусям находиться в пределах досягаемости друг друга, иначе могут возникнуть неприятности. Это правило, как легко понять, запрещает на первом ходу передвинуть лису из 11 на 4 или 6, ибо тогда она оказалась бы в пределах досягаемости гуся. Оно также запрещает передвинуть лису с 10 на 9 или с 12 на 7. Если вы пойдете с 10 на 5, то следующий ход гусем может быть с 2 на 9, чего нельзя было бы делать, если бы предварительно лиса не ушла с 10. Наверное, очевидно, что на кружке одновременно может находиться лишь одна лиса или один гусь. Чему равно наименьшее число ходов, необходимое для того, чтобы поменять местами лис и гусей?

95. Стол Робинзона Крузо. Вот любопытное извлечение из дневника Робинзона Крузо. Его нельзя найти в новых изданиях. А жаль...

«На третий день утром, когда ветер за ночь ослабел, я вышел на берег, надеясь найти пишущую машинку и другие полезные вещи, выброшенные с разбитого корабля; но все, что мне попалось на глаза, — это доска со множеством дырок. Мой человек Пятница много раз говорил, что нам совершенно необходим квадратный стол для чаепитий, и я задумался, как использовать с этой целью данную доску. А поскольку то долгое время, что Пятница проводил со мной, я еще не использовал для того, чтобы вложить в его голову основы полезных знаний, то он был немало удивлен, когда я сказал, что хочу сделать из найденной доски стол, на крышке которого не будет ни одной дырки.

Пятница печально размышлял, как это можно сделать, и пришел в совершенное уныние, когда я сказал, что крышка должна состоять не более чем из двух кусков, соединенных вместе. Однако я научил его, как это можно сделать, чтобы стол был возможно большим. Если быть честным, меня позабавили его слова:

— Мой народ поступает много лучше: у нас просто затыкают дырки, чтобы в них не проваливался сахар». На рисунке приведены точные пропорции доски с расположением на ней пятнадцати дырок. Как Робинзон Крузо сделал из нее наибольшую возможную квадратную крышку стола, состоящую из двух кусков и не содержащую дырок?

96. Пятнадцать фруктовых садов. В графстве Девоншир, славящемся своим сидром, пятнадцать жителей одной деревни были одержимы прекрасным духом дружеского соперничества на почве разведения яблоневых садов. И несколько лет назад они захотели экспериментально разрешить некоторое расхождение во мнениях относительно того, как следует выращивать яблони. Одни считали, что яблоням требуется много света и воздуха, тогда как другие твердо стояли на том, что их следует сажать достаточно тесно, дабы они получали тень и защиту от холодных ветров. Решено было посадить несколько саженцев — разное число в каждом саду — и сравнить результаты.

У одного человека в саду было посажено 1 дерево, у другого — 2 дерева, у третьего — 3, у четвертого — 4 и г. д. У последнего человека в его маленьком саду было посажено 15 деревьев. В прошлом году произошла любопытная вещь. Каждый из этих 15 человек обнаружил, что каждое дерево в его саду принесло одинаковое число яблок. Но, что еще более странно, сравнивая записи, они убедились, что общий урожай в каждом саду оказался почти одинаковым. На самом деле, если бы человек, у которого было 11 деревьев, отдал одно яблоко человеку, владевшему 7 деревьями, а владелец 14 деревьев отдал бы по 3 яблока владельцам 9 и 13 деревьев, то у всех 15 человек яблок оказалось бы поровну.

Головоломка состоит в том, чтобы определить, сколько яблок при этом оказалось бы у каждого из садоводов (у всех одинаковое количество). Ответ получить очень легко, если правильно взяться за дело.

97. Озадаченный жестянщик. Посетив недавно Пекхэм, я обнаружил, что всех там мучает один вопрос: «Что случилось с Сэмом Солдерсом, жестянщиком?» В самом деле, с ним творилось что-то неладное, и жена серьезно опасалась за его разум. Поскольку несколько лет назад он починил мне кипятильный куб, который не взрывался после этого по крайней мере месяца три (и при том лишь слегка повредил одного из наследников повара), то я живо заинтересовался его судьбой.

-— Вот, взгляните, — сказала миссис Солдерс, когда я заглянул к ним. — Такое творится с ним уже три недели. Он почти не ест и не отдыхает, а свое ремесло он забросил настолько, что я не знаю, как мне и быть — ведь у меня пятеро детей на руках. Весь день напролет (и всю ночь) он все считает и считает, теребя волосы, как сумасшедший. Это сведет меня в могилу.

Я настоял, чтобы миссис Солдерс все мне объяснила. Оказалось, Сэм получил от одного из клиентов заказ сделать две прямоугольные цинковые цистерны, одну с крышкой, а другую без нее. Каждая цистерна, наполненная до краев, должна была содержать ровно 1000 кубических футов воды. Жестянщик по уговору должен был получить определенную сумму за цистерну плюс плату за работу. Мистер Солдерс — человек бережливый, поэтому, естественно, он хотел сделать цистерны таких размеров, чтобы на них пошло как можно меньше металла. Именно эта проблема так сильно его и озадачила.

Смогут ли мои изобретательные читатели определить размеры экономичной цистерны с крышкой, а также точные пропорции цистерны без крышки, не забывая, что каждая цистерна должна содержать ровно 1000 кубических футов воды? Под «наиболее экономичной» понимается цистерна, на которую идет наименьшее количество металла. Не следует оставлять металл на «припуски» (кажется, так говорят женщины). Я покажу, как я помог мистеру Солдерсу в его затруднении. Он мне сказал на это:

— Небольшой совет, который вы мне дали, может оказаться очень полезным людям моей профессии.

98. Колонна Нельсона. Во время празднования юбилея Нельсона я стоял на Трафальгарской площади с приятелем, любителем всякого рода головоломок. Какое-то время он смотрел на колонну отсутствующим взглядом и, казалось, совсем не воспринимал моих замечаний.

— Где твои мысли? — спросил я наконец.

— Два фута... — пробормотал он.

— Чья-то шляпа? — спросил я.

— Пять раз вокруг...

— Два фута, пять раз вокруг! О чем ты говоришь?

— Подожди минутку, — сказал он, записывая что-то на обратной стороне конверта.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "200 знаменитых головоломок мира"

Книги похожие на "200 знаменитых головоломок мира" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Генри Дьюдени

Генри Дьюдени - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Генри Дьюдени - 200 знаменитых головоломок мира"

Отзывы читателей о книге "200 знаменитых головоломок мира", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.