» » » » Генри Дьюдени - 200 знаменитых головоломок мира


Авторские права

Генри Дьюдени - 200 знаменитых головоломок мира

Здесь можно скачать бесплатно "Генри Дьюдени - 200 знаменитых головоломок мира" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство ООО "Фирма "Издательство ACT", год 1999. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Генри Дьюдени - 200 знаменитых головоломок мира
Рейтинг:
Название:
200 знаменитых головоломок мира
Издательство:
ООО "Фирма "Издательство ACT"
Год:
1999
ISBN:
5-237-02035-6
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "200 знаменитых головоломок мира"

Описание и краткое содержание "200 знаменитых головоломок мира" читать бесплатно онлайн.



Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.

Книга несомненно доставит большое удовольствие всем любителям этого жанра.






В конце концов келарь прибегнул к помощи одного монаха, который слыл весьма сообразительным, и тот сумел показать ему, как нужно действовать. А можете ли вы найти нужный способ?

77. Флаг. Хорошую задачу на разрезание, где приходится иметь дело лишь с двумя частями, можно встретить довольно редко, так что, быть может, эта головоломка заинтересует читателя. На рисунке показан кусок материи, который требуется разрезать на две части (без потерь), чтобы сложить из них квадратный флаг с четырьмя симметрично расположенными розами. Это было бы довольно легко сделать, если бы не было четвертой розы, поскольку мы могли бы просто провести разрез от А до В и приставить полученный кусок снизу. Но проводить разрез через розу не разрешается, в чем и состоит основная трудность головоломки. Разумеется, части нельзя переворачивать обратной стороной кверху.

78. Ловля свиней. Вы видите на рисунке Хендрика и Катрюн, занятых захватывающим видом спорта — ловлей свиней.

Почему это им не удалось?

Как ни странно, но ответ на этот вопрос дает следующая небольшая игра-головоломка.


Воспроизведите помещенный здесь чертеж на достаточно большом куске картона или бумаги, а вместо датчанина, его жены и двух свиней используйте четыре фишки. В начале игры фишки следует поместить в указанные квадраты. Один игрок представляет Хендрика и Катрюн, а другой — свиней. Первый игрок передвигает датчанина и его жену, на один квадрат каждого, в любом направлении, но не по диагонали, а затем второй игрок передвигает обеих свиней, тоже на один квадрат каждую, но не по диагонали. Игроки делают это по очереди до тех пор, пока Хендрик не схватит одну свинью, а Катрюн — другую.

Поймать животных окажется до смешного простым, если первыми будут двигаться свиньи, но датские свиньи не имеют такой привычки.

79. Игра в «тридцать одно». Некогда (а, возможно, и по сей день) эта игра была излюбленным средством мошенничества для всякого рода шулеров, которые увлекали в нее непосвященных на ипподромах и в поездах. Однако поскольку сама по себе она очень интересна, я не стану извиняться, представляя ее моим читателям.

Шулер выкладывает 24 карты, как показано на рисунке, и предлагает ничего не подозревающему пассажиру попытать счастья, определив, кто из них скорее насчитает 31 или заставит противника превысить эту цифру. Делается это следующим образом.

Один игрок переворачивает карту, скажем, 2, и считает: «Два», второй игрок переворачивает карту, скажем, 5, и, добавляя эту цифру к сумме, говорит: «Семь»; первый игрок переворачивает другую карту, скажем, 1, и считает: «Восемь»; и т. д. по очереди, пока один из них не скажет: «Тридцать одно» — и тем самым не выиграет.

Далее: вопрос состоит в том, следует ли вам для того, чтобы выиграть, первому переворачивать карту или вежливо предоставить это право вашему противнику? Как вам следует играть? Быть может, читатель скажет:

— О, это довольно легко.

Вы должны начинать игру и перевернуть 3; затем, что бы ни делал ваш противник, он не сможет помешать вам набрать 10, 17, 24 и выиграть 31. Вам следует лишь придерживаться этих цифр, чтобы выиграть.

Но это лишь полузнание, которое столь опасно, что отдаст вас прямо в руки шулеру.

Вы играете 3, а шулер играет 4 и говорит: «Семь»; вы играете 3 и считаете: «Десять»; шулер переворачивает 3 и считает: «Тринадцать»; вы играете 4 и считаете: «Семнадцать»; шулер играет 4 и считает: «Двадцать один»; вы играете 3 и говорите свое: «Двадцать четыре».

Теперь шулер переворачивает последнюю, 4, и считает: «Двадцать восемь». Вы ищете 3, но тщетно — все они уже перевернуты! Так что вам остается либо позволить противнику сказать: «Тридцать одно», либо самому превзойти эту цифру; в любом случае вы проиграли. Таким образом, вы видите, что ваш метод безусловного выигрыша полностью терпит крах из-за того, что может быть названо «методом истощения». Я дал вам ключ к этой игре, показав, как вы можете всегда выиграть; однако я не скажу здесь, должны ли вы играть первым или вторым — это вы должны определить сами.

80. Железные дороги. На рисунке показан план китайского города, защищенного пятиугольной стеной. Некогда пять европейских держав добивались концессии на строительство здесь железной дороги, и наконец один из наимудрейших советников императора сказал:

— Пусть каждая из них получит концессию!

Естественно, после этого чиновникам Поднебесной ничего не оставалось, как уточнить детали. Буквами на плане обозначены места входа каждой дороги в город и расположение соответствующих станций. По достигнутому соглашению ни одна линия не должна была пересекать линий других компаний. В попытках заинтересованных сторон найти решение проблемы было потеряно столько времени, что произошли изменения в китайском правительстве и весь план провалился. Возьмите карандаш и начертите пути от А до А, от В до В, от С до С и т. д. так, чтобы они не пересекались друг с другом и со станциями других компаний.

81. Восемь клоунов. На рисунке показана группа клоунов, которую мне довелось однажды видеть. У каждого клоуна на костюме было изображено одно из чисел от 1 до 9. После обычных шуток, прибауток и всевозможных кривляний они закончили свое выступление небольшими числовыми трюками. Одним из них было быстрое построение нескольких магических квадратов. Мне пришло в голову, что если бы клоун 1 не появился (что и произошло на рисунке), то этот последний трюк оказалось бы не так-то легко выполнить. Читателю предлагается определить, каким образом должны перестроиться эти восемь клоунов, дабы образовать квадрат (одно место пустое) так, чтобы сумма вдоль каждой вертикали, горизонтали и каждой из двух диагоналей была одинакова. Пустое место может находиться в любом месте квадрата, но отсутствует клоун именно с номером 1.

82. Арифметика чародея. Некогда один рыцарь пошел за советом к знаменитому чародею. Речь шла о сердечных делах; но после того, как маг предсказал благоприятный исход и приготовил любовное зелье, которое, несомненно, должно было помочь его посетителю, разговор перешел на оккультные темы.

— А знаком ли ты также и с магией чисел? — спросил рыцарь. — Покажи мне какой-нибудь пример твоего умения в подобных делах.

Старый чародей взял пять брусков с изображенными на них числами и поставил их на полку, очевидно, в случайном порядке, так что их расположение оказалось следующим: 41096, как показано на рисунке. Затем он взял в руки бруски с цифрами 8 и 3 так, что получилось число 83.

— Сэр рыцарь, ответь мне, — сказал чародей, — сможешь ли ты умножить одно число на другое в уме?

— По правде говоря, нет, — ответил храбрый рыцарь. — Мне нужны перо и пергамент.

— И все же обрати внимание, сколь это просто для человека, искушенного в тайнах далекой Аравии, который постиг всю магию, заключенную в философии чисел!

Чародей просто поместил 3 на полке слева от 4, а 8 — на противоположном конце. При этом получился правильный ответ 3410968. Удивительно, не правда ли? Сколько других двузначных множителей, обладающих аналогичным свойством, сумеете вы назвать? Вы можете ставить на полку сколько угодно брусков и выбирать любые числа, какие пожелаете.

83. Задача с ленточкой. Если мы возьмем изображенную на рисунке ленточку за концы и распрямим ее, то получим число 0588235294117647. Это число обладает той особенностью, что, умножив его на любое из чисел 2, 3, 4, 5, 6, 7, 8 или 9, вы получите по кругу то же самое число, начинающееся в другом месте. Например, умножив его на 4, мы получим в произведении число 2352941176470588, начинающееся с места, отмеченного стрелкой. Если же мы умножим его на 3, то получим тот же самый результат, только начинающийся с места, отмеченного звездочкой. Далее: головоломка состоит в том, чтобы, изменив расположение цифр на ленточке, добиться того же результата, только 0 и 7 на концах ленточки нельзя перемещать на другие места.

84. Японки и ковер. Трем знатным японкам достался в наследство квадратный ковер, очень дорогой, но еще более ценимый как семейная реликвия. Они решили его разрезать и сделать из него три квадратных коврика так, чтобы каждая могла унести равную долю в свой дом.

Одна дама предложила простейший способ: взять себе меньшую, чем у двух остальных, долю, чтобы разрезать ковер не более чем на четыре части.

Существуют три простых способа сделать это, и я оставляю читателю приятную возможность их отыскать. Скажу лишь, что если ковер имеет площадь в девять квадратных футов, То одной даме достанется квадратный коврик в два квадратных фута, второй — два квадратных фута в двух кусках, а третьей — кусок в один квадратный фут.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "200 знаменитых головоломок мира"

Книги похожие на "200 знаменитых головоломок мира" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Генри Дьюдени

Генри Дьюдени - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Генри Дьюдени - 200 знаменитых головоломок мира"

Отзывы читателей о книге "200 знаменитых головоломок мира", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.