» » » » Карл Саббаг - Веревка вокруг Земли и другие сюрпризы науки


Авторские права

Карл Саббаг - Веревка вокруг Земли и другие сюрпризы науки

Здесь можно скачать бесплатно "Карл Саббаг - Веревка вокруг Земли и другие сюрпризы науки" в формате fb2, epub, txt, doc, pdf. Жанр: Научпоп, издательство Ломоносовъ, год 2012. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Карл Саббаг - Веревка вокруг Земли и другие сюрпризы науки
Рейтинг:
Название:
Веревка вокруг Земли и другие сюрпризы науки
Автор:
Издательство:
Ломоносовъ
Жанр:
Год:
2012
ISBN:
978-5-91678-144-1
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Веревка вокруг Земли и другие сюрпризы науки"

Описание и краткое содержание "Веревка вокруг Земли и другие сюрпризы науки" читать бесплатно онлайн.



Есть детские вопросы, на которые не каждый взрослый ответит: почему ночью небо темное? почему мы не проваливаемся сквозь пол? кто изобрел колесо? почему зеркало меняет местами только лево и право, а не верх и низ? Карл Саббаг подробно разбирает эти и многие другие загадки (да-да, загадки, причем Большой Науки!), и не просто разбирает, а легко, доходчиво, с хорошим юмором рассказывает об окружающих нас чудесах физики, химии, биологии, психологии и даже космологии. Вот еще вопросы: как работает Гугл? можно ли увидеть нейтрино? что такое пятый вкус, о котором никто не знает, кроме японцев? обижаются ли на нас собаки? кто был автором первого в истории мультфильма? Интересно? При чтении этой книги будет еще интереснее! Потому что именно с такой целью она и писалась: напомнить нам, что мир вокруг таинствен и удивителен.

Карл Саббаг (р. 1942) — британец палестинского происхождения, писатель, журналист, телевизионный продюсер. Автор многих научно-популярных книг, документальных фильмов и научно-популярных телесериалов.






В настоящее время используются два типа фантиков: один квадратный со стороной π ×√2, а другой прямоугольный со сторонами π и 2π. (Отрадно осознавать, что еще до того, как к «Моцарткугелям» потянулись руки американских математиков, в разработке фантиков использовался математический расчет.) В обоих случаях площадь обертки приблизительно на 60 % превышает площадь поверхности конфеты, из-за чего около трети идущей на фантики фольги пропадает впустую.

Не иначе как развернув (а возможно, и съев) немало «Моцарткугелей», математики наконец объявили, что нашли способ упаковывать конфеты в меньшее количество фольги. Они выяснили, что если взять фантик в виде равностороннего треугольника со стороной чуть меньше радиуса шарика, умноженного на пять, то можно завернуть в него конфету целиком и фольги на такой фантик уйдет на 0,1 % меньше, чем на нынешнюю обертку. А если найдутся критиканы, считающие, будто достигнутый результат яйца выеденного не стоит и замечательные математики с их несомненными талантами зря потратили силы, то ученые, надув щеки (а может, засунув туда по парочке ку-гелей), возразят, что их открытие может позволить фабрике, производящей «Моцарткугели», снизить углеродсодержащие выбросы в атмосферу, а значит, «хоть отчасти, но решить проблему глобального потепления».

А если я поведаю, что компания, производящая подлинные «Моцарткугели» (есть еще несколько имитаторов), выпускает в год 1,4 миллиона конфет, вам, может быть, удастся ответить на следующий вопрос Ферми (см. главу «Сколько в Чикаго фортепианных настройщиков?»): сколько килограммов фольги в год сэкономит фабрика, перейдя на фантики в виде равносторонних треугольников?

Гипотеза пожарного

Английский математик Годфри Харолд Харди (1877–1947), работавший в абстрактной сфере так называемой чистой, не прикладной математики, в своей книге «Апология математика» попытался оспорить популярное мнение, будто бы математика — удел избранных и интересоваться ею может лишь незначительная доля населения. Впрочем, попытки его выглядели не особенно убедительно — в одной из своих статей о математике он писал: «“Vorlesungen” [ «Лекции о теории чисел»] Ландау[27] или “История” Диксона[28] — шесть великих томов ошеломляющей эрудиции — куда лучше подходят для чтения за завтраком, нежели итоги футбольных матчей».

Харди указывал на тот факт, что многие с удовольствием играют в шахматы или бридж, а ведь обе эти игры требуют математического мышления, между тем как другие с неменьшим наслаждением решают публикуемые в газетах головоломки. Если бы Харди писал в наши дни, он наверняка отметил бы популярность математических головоломок судоку.

В 2007 году произошел трогательный случай, показавший, что необязательно быть математиком, чтобы увлечься цифрами. (Почему трогательный? Поймете чуть позже.) Нью-йоркский пожарный по имени Бобби Беддиа рассказал своему другу, что прошлый день рождения стал для него особенным — он достиг возраста, который сам называл своим «годом рождения». Он имел в виду год, когда его возраст сравнялся с двумя последними цифрами года рождения. Беддиа родился в 1953 году, следовательно, 53 года ему стукнуло в 2006-м. Каждый может вычислить свой собственный «год рождения» — мой был 1984-й[29]. А вот кого собственный «год рождения» наверняка разочарует, так это тех, кто родился в 1900 или 2000 годах.

Как выяснилось, какой бы ни был на дворе год (за исключением 2000-го), на празднование своего «года рождения» имеют право люди двух возрастов с разницей в полвека. Так, в 2006 году наряду с 53-летними ровесниками Беддиа свой «год рождения» отмечали трехлетки, рожденные в 2003 году, которым в 2006-м соответственно стукнуло три года.

Как и многие аспекты теории чисел, «беддианский год», как нарек его один математик, начался с простого наблюдения, но впоследствии породил несколько интересных вопросов, на которые не всегда легко ответить. Вычислить свой беддианский год, исходя из года рождения, проще простого, но как, например, определить, в каком году родились те, чей беддианский год придется, скажем, на 2014-й? Американский математик Барри Сипра решил копнуть еще глубже и попытался вычислить для каждого года, люди какого возрастного диапазона в этот год могут носит звание добеддианцев, то есть еще не достигших своего беддианского года. Сипра пришел к выводу, что в каждом случае речь идет не об одном, а о двух возрастных промежутках. Взяв для рассмотрения 2007 год, Сипра обнаружил, что к этому времени своего беддианского года еще не достигли малыши от 0 до 3 лет, а также возрастная группа постарше — те, чей возраст лежит в границах между 8 и 53 годами. Для всех остальных: тех, кому от 4 до 7 лет, и тех, кому от 53 до 99, — беддианские годы уже миновали. Сложных математических вычислений тут не требуется, однако нужен некий навык умственного жонглирования фактами, а именно — двумя видами чисел, годами и возрастами, и тем обстоятельством, что жизни многих людей «оседлали» рубеж столетий.

Досконально изучив скрытые возможности беддианской теории, Сипра и сам удивился, как столь простое наблюдение смогло подкинуть ученым несколько весьма непростых задачек. К сожалению, Бобби Беддиа так никогда и не узнал о выводах, сделанных математиком из его открытия. За месяц до окончания своего беддианского года он погиб при тушении пожара в пустующем офисном здании неподалеку от того места, где до 11 сентября 2001 года располагались башни-близнецы Всемирного торгового центра.

Вот так совпадение!

Математика Джека Литлвуда[30] однажды попросили припомнить самое поразительное совпадение в его жизни. В ответ он написал:

«Одна девушка шла по лондонской улице Уолтон в гости к своей сестре, Флоренс Роуз Далтон, служившей в доме номер 42. Она миновала дом номер 40 и подошла к дому номер 42, где действительно работала кухарка по имени Флоренс Роуз Далтон (однако она уехала в двухнедельный отпуск, и на это время кухарку подменила ее сестра). Но то был дом номер 42 на площади Овингтон (в конце эта площадь сужается до размеров улицы). А дом 42 по улице Уолтон находился чуть дальше. (Я гостил в доме на площади Овингтон и услышал об этом курьезном происшествии в тот же вечер.)».

Многие из нас попадали в подобные ситуации или хотя бы слышали о них — волей-неволей поверишь, что в таком, казалось бы, случайном стечении обстоятельств кроется некий глубинный смысл. Однако испытываемое нами изумление зачастую связано с тем, что мы услышали только часть истории или ничего не знаем о такой вещи, как теория вероятности.

Обратимся к первому варианту. Допустим, некто звонит вам по телефону и правильно называет имя лошади, которая победит в предстоящем заезде. Проходит неделя, и этот человек снова звонит вам и опять угадывает победителя. Вас так и подмывает принять его предложение и вложить деньги в лошадь, которая победит на следующей неделе. Но что, если я расскажу вам, что еще до первых скачек, где участвовало десять лошадей, этот человек обзвонил сто человек и назвал имя каждой лошади группе из десяти человек? Во второй раз он позвонил уже только тем десятерым, которым в прошлый раз досталась лошадь-победительница, и назвал каждому по одной лошади из второго заезда. Одному человеку из сотни — то есть в данном случае вам — повезло, ему уже дважды правильно указывали победителя. Ничего удивительного, что вам сложно справиться с искушением и не поставить в третий раз все деньги на кон, хотя в действительности шанс «вашей» лошади на победу всего лишь один к десяти.

Одно из самых широко обсуждаемых «пугающих» совпадений связано с написанным в 1898 году романом «Гибель “Титана”». Книга повествует о корабле под названием «Титан», который во время своего первого рейса, в апреле, столкнулся с айсбергом и затонул. Четырнадцать лет спустя, в апреле, во время первого своего плавания из-за столкновения с айсбергом затонул «Титаник». Погибло 1500 человек, причем многие — из-за нехватки спасательных шлюпок. В книге при крушении «Титана» погибло около 3000 пассажиров и членов экипажа.

Это совпадение на практике куда более вероятно, чем может показаться. Предположим, вы живете в 1898 году и хотите написать полный драматизма роман о кораблекрушении. Вам понадобятся название судна, маршрут, причина катастрофы и еще несколько факторов — наподобие огромного количества жертв и всеобщего внимания к происходящему, — добавляющих рядовой аварии на водах накал страстей. Почти все точные детали из этого списка, позволяющие вымышленному судну «совпасть» с реальным «Титаником», — результат логического выбора. Для начала корабль должен быть большим, а значит, носить имя, отражающее внушительные размеры. Названия «Гаргантюа», «Гигант», «Колосс» и «Громадина» не очень-то «корабельные», а вот что-то из области мифологии, ну, не знаю, допустим, «Титан», вполне может подойти. Если это крупное судно с английскими и американскими пассажирами (автор рассчитывал завоевать англоязычный книжный рынок), то вряд ли оно будет курсировать по Тихому или Индийскому океанам, а вот трансатлантический рейс — самое то. А какова самая распространенная причина кораблекрушений в Атлантике? Айсберги. И в какое время года айсберги представляют наибольшую опасность? В апреле.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Веревка вокруг Земли и другие сюрпризы науки"

Книги похожие на "Веревка вокруг Земли и другие сюрпризы науки" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Карл Саббаг

Карл Саббаг - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Карл Саббаг - Веревка вокруг Земли и другие сюрпризы науки"

Отзывы читателей о книге "Веревка вокруг Земли и другие сюрпризы науки", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.