» » » » Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики


Авторские права

Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики

Здесь можно скачать бесплатно "Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики" в формате fb2, epub, txt, doc, pdf. Жанр: Научпоп, издательство КоЛибри, год 2012. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
Рейтинг:
Название:
Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
Издательство:
КоЛибри
Жанр:
Год:
2012
ISBN:
978-5-389-01770-2
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики"

Описание и краткое содержание "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики" читать бесплатно онлайн.



Алекс Беллос, известный журналист, многие годы работавший для «Guardian», написал замечательную книгу о математике. Книга эта для всех — и для тех, кто любит математику, и для тех, кто считает ее невероятно скучной и далекой от жизни. Беллосу удалось создать настоящий интеллектуальный коктейль, где есть и история, и философия, и религия, и конечно же математика — чудесные задачки, которые пока не решишь, не заснешь!






Индийской философии так же внутренне присуща концепция «несуществования», как и индийской математике — концепция нуля. Концептуальный скачок, приведший к изобретению нуля, произошел в цивилизации, которая приняла пустоту как суть Вселенной. Символ изображения нуля, возникший в Древней Индии, в полной мере воплотил в себе главное откровение Шанкарачарьи о том, что математику невозможно отделить от духовности. Окружность, олицетворяющая нуль, была выбрана потому, что выражает циклическое движение небесного свода. Нуль означает ничто, и это означает вечность.

* * *

Законная гордость, связанная с изобретением нуля, привела к тому, что математическое мастерство стало частью индийской национальной идентичности. Школьникам предписано учить таблицу умножения до 20, что в два раза больше, чем учил я в обычной английской школе[23]. В предшествующие десятилетия индийские школьники должны были заучивать таблицу умножения до 30. Один из ведущих неведических индийских математиков С. Г. Дани сказал мне по этому поводу: «Когда я был ребенком, у меня сложилось твердое впечатление, что математика представляет собой нечто исключительно важное». Для взрослых было обычным делом задавать детям математические задачки, и правильные решения весьма приветствовались. «Помимо своей практической пользы, математика — это нечто такое, чему в Индии придается большое значение как среди коллег, так и в кругу друзей».

Дани — старший профессор математики в Институте фундаментальных исследований Тата в Бомбее. Он носит очки в черепаховой оправе, его курчавые волосы камуфлируют залысину на академический манер, верхнюю губу прикрывают усы. Он вовсе не фанат ведической математики; по его мнению, в Ведах нельзя найти арифметические методы Тиртхи, да и особой пользы от этих методов нет. «Не думаю, что они делают математику какой-то особенно интересной. Главное в них то, что эти алгоритмы ускоряют счет, а не то, что они делают это занятие таким уж интересным или позволяют лучше усвоить алгоритм вычислений. Весь интерес — в результате, а не в процессе».

Поэтому я был удивлен, когда Дани положительно отозвался о трудах Тиртхи, связанных с ведической математикой. Дани воспринимает Тиртху на эмоциональном уровне. «Я сочувствую ему, у него был комплекс неполноценности, который он попытался преодолеть. Когда я был ребенком, я тоже испытывал нечто похожее. В те годы (вскоре после обретения независимости) многие в Индии полагали, что нам следует всеми правдами и неправдами забрать обратно (у британцев) все, что мы утратили. В наибольшей степени это относилось к предметам искусства, которые англичане вывезли из страны. Ведь мы действительно столько потеряли! Я был уверен — мы должны получить обратно эквивалентный объем того, что потеряли.

Ведическая математика — ошибочная попытка вернуть арифметику Индии».

* * *

Некоторые из приемов ведической математики настолько просты, что я задался вопросом, встречаются ли они где-нибудь еще в литературе по арифметике. Я решил, что хорошей отправной точкой для начала поисков будет книга Фибоначчи «Liber Abaci». Вернувшись в Лондон, я отыскал ее экземпляр в библиотеке, открыл там главу про умножение и увидел, что первый же из предложенных Фибоначчи методов — не что иное, как «вертикально и крест-накрест». Я исследовал вопрос несколько глубже и обнаружил, что умножение на основе «все из 9 и последнее из 10» было излюбленным методом нескольких европейских авторов, живших в XVI веке. (На самом деле имеется даже предположение, что эти методы повлияли на принятие знака ×. К 1631 году, когда × впервые появился в качестве обозначения для умножения, уже были опубликованы книги, в которых оба метода умножения иллюстрировались большими знаками, выполненными в виде пересекающихся линий.)

Ведическая математика Тиртхи, как представляется, есть, по крайней мере отчасти, переоткрытие некоторых арифметических приемов, широко распространенных во времена Возрождения. Может быть, они пришли из Индии, а может быть, и нет, но каково бы ни было их происхождение, очарование ведической математики для меня состоит в том, что она позволяет по-детски непосредственно радоваться числам, а также структурам и симметриям, которые в ней содержатся. Арифметика играет существенную роль в повседневной жизни, причем важно вычислять правильно, и именно поэтому нас столь методично учат ей в школе. Однако, сосредоточившись на практических аспектах, мы перестали замечать, насколько восхитительна индийская система числительных. Она стала огромным шагом вперед по сравнению со всеми предыдущими методами счета, и более того — оставалась непревзойденной в течение тысячи лет. Сейчас мы воспринимаем позиционную десятичную систему как нечто само собой разумеющееся, не задумываясь о том, насколько она многогранна, изящна и эффективна.

Глава 4

Вокруг π

Автор путешествует по Германии ради того, чтобы стать свидетелем самого быстрого в мире умножения, совершаемого в уме, ищет окольный путь для того, чтобы начать говорить об окружностях и рассказать трансцендентную сказку, приводящую на диван в Нью-Йорке.

В начале XIX столетия до английской королевы Шарлотты[24] дошла молва о вундеркинде Джордже Паркере Биддере — сыне девонширского каменщика. Она задала мальчику такой вопрос: «От мыса Лэндс-энд в Корнуолле до Фаррэтс-хэд в Шотландии 838 миль; сколько времени понадобится улитке, чтобы проползти это расстояние, если она ползет со скоростью 8 футов в день?»

Заданный вопрос и полученный ответ — 553 080 дней — упомянуты в популярной книге того времени «Краткий рассказ о Джордже Биддере, прославленном Чудо-Вычислителе, с приложением множества самых трудных вопросов, заданных ему в главных городах королевства, и его невероятно быстрых ответов». На ее страницах приведен список грандиознейших вычислений, проделанных ребенком, включая такую «классику», как вопросы «Чему равен квадратный корень из 119 550 669 121?» (ответ — 345 761 — последовал через полминуты) и «Сколько фунтов весит сахар, погруженный в 232 бочки, каждая из которых весит 12 центнеров, 1 четверть и 22 фунта?». (Ответ — 323 408 фунтов — также последовал через полминуты.)

Использование арабских цифр существенно упростило операцию сложения, но тут вдруг выяснилось, что некоторые люди отмечены поистине потрясающими арифметическими способностями. Нередко эти чудо-вычислители не преуспевали ни в чем другом, кроме как в действиях с числами. Один из самых ранних известных нам примеров — сельскохозяйственный рабочий из Дербишира Джедедия Бакстон, изумлявший всю округу своими способностями к счету, хотя он никогда не учился ни читать, ни писать. Он мог, например, вычислить, какая сумма получится после 140-кратного удвоения фартинга. (Ответ, выраженный в фунтах, дается числом длиной в 39 цифр, плюс остаются 2 шиллинга и 8 пенсов.) В 1754 году интерес к таланту Бакстона достиг такого уровня, что его позвали в Лондон, где члены Королевского общества его внимательно обследовали. По всей видимости, он страдал некоторой формой высокофункционального аутизма. Например, когда его повели в театр на спектакль «Ричард III», действие на сцене оставило его совершенно равнодушным, он лишь сообщил, что актер совершил 5202 шага и произнес 14 445 слов.

В XIX веке «чудо-вычислители» блистали на сценах всего мира. Некоторые из них проявляли недюжинные способности уже в самом юном возрасте. Зира Колберн из Вермонта впервые выступил на публике в пятилетнем возрасте, а в восемь приплыл в Англию с видами на громкий и прибыльный успех. (Колберн, кстати, имел от рождения 12 пальцев, хотя осталось неизвестным, давало ли ему это какие-либо преимущества при обучении счету.) Девонширский парень Джордж Паркер Биддер был современником Колберна. Пути двух вундеркиндов пересеклись в 1818 году, когда Колберну было 14 лет, а Биддеру — 12, и их встреча в одном лондонском пабе неизбежно привела к математической дуэли.

Колберна спросили, как много времени понадобится, чтобы обогнуть земной шар на воздушном шаре, если шар движется со скоростью 3878 футов в минуту, а Земля имеет в окружности 24 912 миль. То был вопрос, который во всем мире задавали на состязаниях на получение неофициального титула самого всезнайского всезнайки на свете. Однако после девятиминутного размышления Колберн так и не смог дать ответ. Одна лондонская газета опубликовала разгромную статью, в которой говорилось, что оппоненту Колберна, напротив, для решения задачи понадобилось всего две минуты. Ответ — 23 дня, 13 часов и 18 минут — был встречен бурными рукоплесканиями. И на многие другие заданные ему вопросы американский мальчик отвечать отказался, тогда как юный Биддер ответил на все. В своей автобиографии «Воспоминания Зиры Колберна, написанные им самим», американец, желая произвести благоприятное впечатление, излагает несколько иную версию: «Биддер продемонстрировал огромную силу и мощь ума в высших областях арифметики, — сначала пишет он, а затем пренебрежительно добавляет: — Но оказался не в состоянии извлекать корни и разлагать числа на множители». Кто же стал победителем, так и осталось неизвестным.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики"

Книги похожие на "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Алекс Беллос

Алекс Беллос - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики"

Отзывы читателей о книге "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.