» » » » Шинтан Яу - Теория струн и скрытые измерения Вселенной


Авторские права

Шинтан Яу - Теория струн и скрытые измерения Вселенной

Здесь можно скачать бесплатно "Шинтан Яу - Теория струн и скрытые измерения Вселенной" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Питер, год 2012. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Шинтан Яу - Теория струн и скрытые измерения Вселенной
Рейтинг:
Название:
Теория струн и скрытые измерения Вселенной
Автор:
Издательство:
Питер
Год:
2012
ISBN:
978-5-459-00938-5
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Теория струн и скрытые измерения Вселенной"

Описание и краткое содержание "Теория струн и скрытые измерения Вселенной" читать бесплатно онлайн.



Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.

Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.






Рис. 9.5. С помощью процесса дискретизации можно аппроксимировать одномерную кривую и двухмерную поверхность конечным числом точек. Такая аппроксимация, естественно, будет точнее при увеличении количества точек


Если мы знаем, как измерить расстояние в более крупном пространстве (большом сыре), то мы также будем знать, как измерить размер дырки. В этом смысле вложенное пространство, или дыра, наследует метрику из «сырного» опорного пространства, в котором она находится. В 1950-е годы Джон Нэш доказал, что если поместить римановы многообразия в пространство с достаточно большим количеством измерений, то можно получить любую желаемую индуцированную метрику. Но теорема Нэша о вложении, являющаяся одной из самых великих работ этого знаменитого математика, применима к действительным многообразиям, помещенным в действительное пространство. В общем случае, комплексный вариант теоремы Нэша неверен. Но я считал, что комплексная версия этой теоремы может быть верной при определенных обстоятельствах. Например, я аргументировал, что большой класс кэлеровых многообразий может быть вложен в проективное пространство высокой размерности таким образом, что индуцированная метрика будет сколь угодно близка к исходной метрике при условии, что индуцированная метрика соответствующим образом масштабирована или «нормализована», то есть все ее векторы умножены на константу. Будучи специальным случаем кэлеровых многообразий, многообразия Калаби-Яу с риччи-плоской метрикой удовлетворяют этому топологическому условию. Это означает, что можно всегда индуцировать риччи-плоскую метрику, и ее можно всегда аппроксимировать путем вложения многообразия в опорное или проективное пространство со значительно большей размерностью.

Рис. 9.6. В геометрии часто говорят о «вложении» объекта или пространства в «опорное пространство» высокой размерности. В данном случае мы вложили квадрат, то есть одномерный объект, поскольку он состоит из изогнутого несколько раз отрезка прямой, в двухмерное опорное пространство — сферу


Ганг Тиан, будучи в то время моим аспирантом, доказал это в статье, вышедшей в 1990 году, которая фактически была его диссертационной работой. С тех пор к моему исходному утверждению было добавлено несколько важных уточнений, включая диссертацию еще одного моего аспиранта Вей-Донг Руана о том, что возможна более точная аппроксимация риччи-плоской метрики. Главное уточнение было посвящено способу вложения многообразия Калаби-Яу в опорное пространство. Нельзя сделать это бессистемно. Идея состоит в том, чтобы выбрать соответствующее вложение так, чтобы индуцированная метрика была наиболее близка к риччи-плоской метрике. Для этого следует поместить многообразие Калаби-Яу на возможно лучшее место, так называемую сбалансированную позицию, которая является той позицией среди всех возможных, где наследуемая метрика приближается вплотную к риччи-плоской.

Понятие сбалансированной позиции ввели в 1982 году Петер Ли и я для случая подмногообразия (или подповерхностей) на сфере, находящейся в действительном пространстве. Затем мы пошли дальше — к общему случаю подмногообразия в сложном опорном (или проективном) пространстве со множеством измерений. В те годы Жан-Пьер Бургиньон, являющийся в настоящее время директором Института высших научных исследований, начал с нами сотрудничество, которое вылилось в 1994 году в совместную статью по этой теме.

Ранее на конференции по геометрии в Калифорнийском университете в Лос-Анджелесе я предположил, что каждое кэлерово многообразие, допускающее риччи-плоскую метрику, включая Калаби-Яу, является устойчивым, но такое понятие устойчивости сложно определить. На последующих семинарах по геометрии я продолжал подчеркивать важность работы Бургиньона-Ли-Яу, как теперь ее называют, в отношении идеи устойчивости. Наконец, несколько лет спустя мой аспирант Вей Луо из Массачусетского технологического института установил связь между устойчивостью Калаби-Яу и условием равновесия. Благодаря работе Луо я смог видоизменить свою гипотезу, придя к заключению, что если вложить Калаби-Яу в многомерное пространство, то можно всегда найти положение, в котором позиция будет равновесной.

Саймон Дональдсон доказал, что эта гипотеза является верной. Его доказательство также подтвердило суть этой новой схемы аппроксимации: если вложить Калаби-Яу в высокоразмерное опорное пространство и выполнить условие равновесия, то метрика будет значительно ближе к риччи-плоской. Дональдсон доказал это, показав, что индуцированные метрики образуют последовательность в опорных пространствах увеличивающейся размерности и что эта последовательность сходится, стремясь к идеальной риччи-плоской метрике при стремлении числа измерений к бесконечности. Однако это заявление справедливо лишь постольку, поскольку верна гипотеза Калаби: когда Дональдсон продемонстрировал, что эта метрика сходится к риччи-плоской метрике, его доказательство опиралось на существование риччи-плоской метрики.

Доказательство Дональдсона имело также и практические результаты, поскольку он показал, что существует лучший способ выполнения встраивания — равновесный метод. Разрешение проблемы таким способом дает средства ее решения и возможную стратегию для вычислений. В 2005 году Дональдсон применил этот метод, численно получив метрику для K3-поверхности, а также показав, что не существует фундаментальных препятствий для использования этого метода в случае увеличения числа измерений.[173] В 2008 году Майкл Дуглас с сотрудниками в своей статье, основанной на работе Дональдсона, получили численными методами метрику для семейства шестимерных многообразий Калаби-Яу — вышеупомянутой квинтики.

В настоящее время Дуглас сотрудничает с Брауном и Оврутом в вопросах вычисления метрики для многообразия Калаби-Яу в их модели. Пока никто не смог вычислить константы связи или массы. Но Оврута привлекает перспектива вычисления масс частиц. «Не существует способа выведения этих величин из самой Стандартной модели, — говорит он, — но теория струн, по крайней мере, предлагает возможность, которой никогда не было ранее». Не все физики согласны с тем, что эта цель достижима, однако Оврут считает, «что дьявол кроется в деталях. Нам еще предстоит вычислить константы взаимодействия Юкавы и массы, которые могут оказаться полностью неверными».[174]

Канделас считает маловероятным, что современные модели окажутся конечной моделью Вселенной. Он придерживается мнения, что при попытке создать такую модель можно получить «много верных подтверждений. Но если углубиться в эти модели, то рано или поздно окажется, что в них что-то не работает».[175] Не стоит считать современные модели последним словом, лучше рассматривать их как часть общего процесса изучения природы, в ходе которого разрабатываются важные инструментальные средства. Все сказанное относится и к работам по реализации Стандартной модели, включающей браны, орбиобразия или торы, ни одна из которых не доведена до конца.

Но Строминджер считает, что прогресс налицо. «Люди находят все больше и больше моделей, а некоторые из этих моделей подходят все ближе к тому, что мы наблюдаем вокруг нас. Но мы еще не видели как “баскетбольный мяч летит через всю площадку”. Именно этого мы ждем с нетерпением».[176] Используя еще одну аналогию со спортом, Строминджер сравнил статью 1985 года о компактификации Калаби-Яу, написанную им совместно с Канделасом, Горовицом и Виттеном, с попаданием мяча для гольфа в лунку, находящуюся на расстоянии двух сотен ярдов. «Было чувство, что необходим еще только один удар, чтобы попасть в лунку. Но прошло уже два десятилетия, а физики все еще пытаются это сделать», — говорит он.[177]

«Двадцать пять лет — это большой срок для теоретической физики, и только сейчас заметно явное продвижение вперед, — говорит Канделас. — Мы, наконец, достигли стадии, когда люди могут делать что-то практическое с этими новыми идеями».[178]

Прекрасно осознавая, что исследователи добились значительных успехов, Аллан Адамс (Массачусетский технологический институт) все же считает, что «неправильно предполагать, будто близость к Стандартной модели означает, что мы уже все сделали». «Наоборот, — утверждает он, — сложно понять, как далеко нам предстоит еще идти вперед. Хотя может показаться, что мы уже близки к нашей цели, но все еще существует “большая пропасть” между Стандартной моделью и тем, где мы находимся сейчас».[179]

В конце своих приключений в Стране Оз Дороти узнает, что у нее с самого начала была возможность вернуться домой. После нескольких десятилетий исследований Страны Калаби-Яу струнные теоретики и их коллеги-математики (даже те, кто вооружен разящей мощью геометрического анализа) считают, что вернуться домой, к реалиям обычной физики, известной как Стандартная модель, а оттуда к физике, которая, как мы знаем, должна находиться еще дальше, все еще очень сложно. Если бы это можно было сделать так же легко, как закрыть глаза, щелкнуть каблуками башмачков и сказать: «Нет лучше места, чем дом»… Но тогда бы мы пропустили все самое интересное.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Теория струн и скрытые измерения Вселенной"

Книги похожие на "Теория струн и скрытые измерения Вселенной" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Шинтан Яу

Шинтан Яу - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Шинтан Яу - Теория струн и скрытые измерения Вселенной"

Отзывы читателей о книге "Теория струн и скрытые измерения Вселенной", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.