Анри Рухадзе - События и люди. Издание пятое, исправленное и дополненное.

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "События и люди. Издание пятое, исправленное и дополненное."
Описание и краткое содержание "События и люди. Издание пятое, исправленное и дополненное." читать бесплатно онлайн.
Книга известного российского физика-теоретика А. А. Рухадзе включает в себя воспоминания, а также публицистические заметки, опубликованные в средствах массовой информации в 1996–2009 гг.
Здесь
а (df/dt)st — интеграл парных упругих столкновений, являющийся билинейным функционалом f(p, r, t). В соответствии с духом больцмановского приближения сила F может быть только внешней, так что и поля E0 и B0 могут быть только внешними, их источниками в уравнениях Максвелла являются заданные плотности заряда ρ0 и тока j0.
Здесь уместно заметить, что при написании уравнения (1) для обычного газа незаряженных частиц Больцман рассматривал частицы как твердые сферы с геометрическим радиусом a0 (радиусом взаимодействия). Условие применимости кинетического описания посредством уравнения (1) для такой системы записывается в виде
где n0 — плотность частиц. Это неравенство, соответствующее малости размера частиц a0, т. е. радиуса их взаимодействия, по сравнению со средним расстоянием между частицами есть условие применимости газового приближения для системы нейтральных частиц. Оно означает, что частицы основное время находятся в свободном полете и лишь изредка сталкиваются. При этом, хотя потенциал взаимодействия и бесконечно велик, т. е. взаимодействие сильное, происходит такое взаимодействие редко.
Л. Д. Ландау при выводе уравнения (1) для газа из кулоновски взаимодействующих частиц условием типа (3) воспользоваться не мог, поскольку характерный радиус взаимодействия в этом случае «бесконечно» велик. Он воспользовался малостью средней потенциальной энергии взаимодействия частиц e2n1/3 по сравнению со средней кинетической энергией теплового движения χT и за условие газовости плазмы принял
где e — заряд электрона, n — плотность электронов, а χ — постоянная Больцмана. Это позволило ему получить сходящийся интеграл парных столкновений и записать кинетическое уравнение (1) в виде
где
Здесь u = v — v1 — относительная скорость сталкивающихся частиц, а L — кулоновский логарифм
Суммирование в (5) распространяется по электронам и ионам.
Заметим, что при условии (4) поле пробного статического заряда q в плазме оказывается экранированным, причем потенциал поля дается формулой
где — дебаевский радиус, его можно считать характерным радиусом взаимодействия заряженных частиц в плазме. Именно это обстоятельство и использовал Ландау при выводе уравнения (5) и получил сходящийся интеграл столкновений, когда обрезал кулоновское взаимодействие на дебаевском радиусе.
Вместе с тем, если rp сравнить со средним расстоянием между частицами, то окажется, что их отношение велико:
Это означает, что в сфере действия заряженной частицы находится большое число других частиц, и в этом смысле возникает сомнение в справедливости учета только парных столкновений, а следовательно, и самого кинетического уравнения Ландау (5).
3. Первым, кто обратил внимание на неприменимость больцмановского приближения для описания плазмы, был А. А. Власов, который писал [3]: «Метод кинетического уравнения, учитывающий только парное взаимодействие — взаимодействие посредством удара — для системы заряженных частиц является аппроксимацией, строго говоря, неудовлетворительной. В теории таких совокупностей существенную роль должны играть силы взаимодействия и на далеких дистанциях. Следовательно, система заряженных частиц есть по существу не газ, а своеобразная система, стянутая далекими силами»[50]. При этом А. А. Власов обосновывал свое утверждение из неравенства (8), являющегося следствием (4). Согласно (4), внутри радиуса действия сил находится одновременно много частиц, в то время как, согласно приближению Больцмана (3), должно иметь место обратное условие. Это и натолкнуло А. А. Власова на мысль ввести взаимодействие данной частицы одновременно со всеми частицами плазмы посредством создаваемых этими частицами электромагнитных полей как главное взаимодействие. Парные же взаимодействия должны учитываться как малые поправки.
В результате кинетическое уравнение для электронов запишется в виде
В отличие от уравнения Ландау (5) здесь поля E и B — это полные поля, создаваемые не только внешними источниками, но и самими частицами плазмы. Поэтому они удовлетворяют уравнениям Максвелла
в которых кроме внешних источников pext и jext фигурируют индуцированные в плазме источники:
Здесь так же, как и выше, суммирование ведется по всем сортам заряженных частиц.
Что же касается (не выписанного) столкновительного члена в уравнении (9), то А. А. Власовым он считался малым и принимался в форме Ландау (5). Однако, оставаясь в рамках приближения Больцмана, обрезание взаимодействия, по его мнению, следовало делать не на дебаевском радиусе, а на длине порядка среднего расстояния между электронами. Поэтому кулоновский логарифм L в теории Власова принимался в η-1 раза меньшим, чем (6). Это, на первый взгляд, несущественное отличие в действительности является принципиальным. Здесь надо отдать должное физическому чутью Ландау, который в этом моменте оказался полностью прав. Строго это, однако, было доказано лишь в конце 1950-х годов А. Ленардом и Р. Балеску, получившими интеграл парных столкновений с учетом поляризации плазмы и обосновавшими обрезание взаимодействия на дебаевском радиусе (см. учебник [7]). Последовательный же вывод уравнения (9) методом разложения по параметру (4) был дан, как уже отмечалось выше, в монографии Н. Н. Боголюбова [4]. Систему уравнений (9) — (11) в пренебрежении парными столкновениями в литературе принято называть системой уравнений Власова-Максвелла, а само кинетическое уравнение (9) — уравнением Власова. Часто последнее еще называют кинетическим уравнением для бесстолкновительной плазмы. Такое название, однако, следует считать неудачным, поскольку уравнение (9) даже без учета правой части учитывает дальние столкновения, а точнее — взаимодействие частиц посредством самосогласованных полей[51].
А. А. Власов на основе приведенной системы уравнений в пренебрежении парными столкновениями исследовал малые линейные колебания плазмы в отсутствие внешних источников и внешних полей. При это он показал, что в такой изотропной плазме существуют чисто продольные (в которых Е = —Ф) и чисто поперечные (в которых divE = 0) волны, и получил для них в общем виде дисперсионные соотношения, связывающие частоту и и волновой вектор k для возмущения вида exp(—iωt + ikr). Здесь приведем результаты анализа только чисто электронных продольных колебаний, поскольку именно они перекликаются с результатами работ Л. Д. Ландау.
Проведенный А. А. Власовым анализ дисперсионного уравнения для малых продольных колебаний изотропной электронной плазмы с максвелловской равновесной функцией распределения по скоростям показал, что в пренебрежении парными столкновениями частиц в области фазовых скоростей, превышающих тепловую скорость электронов, такие колебания не затухают и обладают следующим законом дисперсии:
где и ωp — известная со времен И. Ленгмюра плазменная (электронная ленгмюровская) частота, а — тепловая скорость электронов. Наличие спектра высокочастотных электронных колебаний с малой групповой скоростью
хорошо согласовывалось с известными экспериментальными результатами И. Легмюра и Л. Тонкса [8]. Подтверждением правильности теории А. А. Власова следует считать также то, что медленные продольные колебания в чисто электронной плазме оказались невозможными. Именно, в области vφ = ω/k << vTe поле таких колебаний экранируется, причем размер экранировки определяется дебаевским радиусом, что согласуется с глубиной дебаевской экранировки поля статического заряда в плазме (7), полученной Л. Д. Ландау из чисто термодинамических соображений[52].
Вместе с тем вызывало некоторую неудовлетворенность отсутствие затухания колебаний, хотя в приближении самосогласованного поля взаимодействие частиц учитывалось. Сам А. А. Власов в этом ничего плохого не видел. Более того, парную столкновительную релаксацию, которая, согласно теории Л. Д. Ландау, определяется частотой электрон-ионных столкновений
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "События и люди. Издание пятое, исправленное и дополненное."
Книги похожие на "События и люди. Издание пятое, исправленное и дополненное." читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Анри Рухадзе - События и люди. Издание пятое, исправленное и дополненное."
Отзывы читателей о книге "События и люди. Издание пятое, исправленное и дополненное.", комментарии и мнения людей о произведении.