» » » » Алексей Лосев - Хаос и структура


Авторские права

Алексей Лосев - Хаос и структура

Здесь можно скачать бесплатно "Алексей Лосев - Хаос и структура" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, год 1993. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Алексей Лосев - Хаос и структура
Рейтинг:
Название:
Хаос и структура
Издательство:
неизвестно
Год:
1993
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Хаос и структура"

Описание и краткое содержание "Хаос и структура" читать бесплатно онлайн.



"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число.

"Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."






Сущность вариационного исчисления базируется на расширении самого понятия функции. Сейчас мы укажем, почему в этом и надо искать формулированный только что диалектический синтез двух интегральных определенностей.

Обычно в анализе мы имеем аргумент jc и зависящую от него функцию у. Меняется x, меняется и зависящая от него функция. Можно, однако, под аргументом понимать не просто х, а целую функцию и говорить, таким образом, о зависимости функции от функции. В сущности, и здесь нет ничего нового по сравнению с тем же дифференциальным исчислением, где можно найти сколько угодно зависимостей функции и где дается определенное правило дифференцирования таких «сложных» функций. И не в этом специ–фикум функционального и вариационного исчисления. Здесь имеется в виду не просто зависимость функции от функции, т. е. зависимость функции от количественного значения функции, но тут — зависимость функции от изменения вида функции, от последовательной деформации самой структуры функции. Роль аргумента принимает здесь на себя самый вид функции. Изменяется вид, структура функции, и—соответственно—меняется количествен–ное значение функции, а отсюда—соответственно—возникает то или иное значение интеграла.

Когда в диалектике возникает вопрос о синтезировании границы и ограниченного, всегда ищется категория, которая бы сразу дала и охватила как границу, так и ограниченное, чтобы оба эти начала превратились в нечто цельное, неделимое и даже неразличимое. В определенном интеграле дана определенность границ интеграла в связи с определенностью области изменения аргумента. В интегрировании дифференциального уравнения дана определенность содержания интеграла в связи с определенным содержанием изменения функции. Оба эти взаимопротивоположные момента — граница и содержание—даны количественно, хотя уже в содержании, как в том, что противоположно границе, уже содержится качественный момент, предполагающийся, но не использованный как чистая качественность, а использованный пока только количественно. Стало быть, синтез теории определенных интегралов и интегрирования дифференциальных уравнений есть в сущности синтез формы и содержания, предела и определяемого, границы и ограничиваемого.

Предел и граница в глубине своей есть нечто качественное, хотя и возникает ради отличения одного от другого, т. е. ради количественных противоположений. Содержание, напротив того, есть нечто количественное, поскольку оно есть результат раздробления того, что очерчено определенными границами, — хотя возникает это содержание, как нечто заполняющее данные границы, т. е. ради качественной самостоятельности. Синтез того и другого не есть уже и не качество, и не количество, а то, в чем они совпали и отожествились, т. е. структура, вид, форма, или, как Гегель сказал бы, «мера» (Maass), т. е. размеренность, измеренность, лик, лицо качества, принявшего в себя все количественные определения. Пока форма и содержание фиксируются в отдельности, им присуща количественность или незримо наличная, но диалектически еще не положенная, не зафиксированная качественность, или обратно — качественность в условиях невыявленной количественности. Синтез их — одинаково полагает и то и другое и одновременно снимает их ради большей общности и смысловой взаимопронизанности. В определенном интеграле — ограниченность пределов; в интегрированном дифференциальном уравнении — положенность внутренних определений; в вариационном исчислении разыскивается интеграл, который является и результатом изменения аргумента χ в определенных пределах (и потому тут ищется всегда определенный интеграл), и результатом изменений самой функции (и потому тут дана изменяемость самой структуры функции). Подчеркиваем, что здесь разыскивается определенный интеграл в условиях изменения именно структуры функции, потому что чисто количественные изменения функции привели бы не к диалектическому синтезу формы и содержания, но к чисто внешнему и механическому их объединению.

Простейший пример:


Здесь χ—аргумент, у—функция, у' — первая производная, х0 и x1 —крайние пределы изменения значений аргумента. Вариационное исчисление ставит своею целью нахождение условий для максимума и минимума определенного интеграла I, когда y=f(x) сама меняется по своему виду. Тут исследуют: при какой зависимости у от х, входящей в состав подынтегральной функции, данный интеграл будет иметь максимальное или минимальное значение? В дифференциальном исчислении в учении о maxi[mu]m и minim [um] вопрос ставится так: при каком значении χ функция у достигает максимума или минимума (причем это значение находится из наблюдения за поведением производных)? В вариационном исчислении не только все исследование совершается в направлении, обратном дифференциальному исчислению (как это и вообще в интегральном исчислении), но, кроме того, в этом обратном направлении путь совершается не только от производной, но еще и от ее связанности с другими действиями, так что лучше уже говорить, — от новой функции, куда производная входит лишь как составной элемент, да еще в этой функции содержится вариируемая первообразная функция, т. е. функция, изменяющаяся в своей структуре. Получаемый таким способом интеграл несет на себе энергию определенности области изменения аргумента, энергию самостоятельной определенности, зависящей от этого аргумента функции, и, наконец, энергию изменений структурной определенности функции.

МАТЕМАТИКА И ДИАЛЕКТИКА.

К ЛОГИЧЕСКОМУ ОБОСНОВАНИЮ АКСИОМАТИКИ ТРАНСФИНИТОВ

Философия есть такое знание, которое, хотя и не сводится на совокупность прочих наук, все–таки касается решительно всякой науки, и для всякой науки у нее готовы логические предписания, которые она довольно бесцеремонно диктует и требует безоговорочного признания. Хорошо это или плохо, я не знаю; но я знаю, что современная математика, несомненно, выиграла бы, если бы ее работники немного более чутко и внимательно относились к философии и логике. Присматриваясь к некоторым построениям современных математиков, с удивлением замечаешь, что под ворохом всяких обозначений, символов, значков и страшных, пугающих терминов, что математики любят нагромождать выше всякой меры, кроются самые элементарные и примитивные проблемы, которые в философии давным–давно или решены, или решались. Если бы нашелся светлый ум, который бы сумел выразить некоторые математические теоремы без всей этой удручающей суеты значков и обязательного стремления свести все на «формулы», то философски грамотный читатель поразился бы той близостью и даже тождеством проблем, которыми всегда занимались и занимаются философы и математики. В настоящей статье я хочу приоткрыть для философов одну такую область математики и показать, что здесь ставятся и решаются как раз те самые вопросы, которые интересовали всегда и философов и которые решаются всяким философом, если он задался целью дать строгую и систематическую разработку логики. Эта математическая наука есть учение о трансфинитных числах, или, общее, учение о множествах. Однако я бы уклонился от простой логической интерпретации учения о множествах. Я преследую задачу несколько более трудную и ответственную и хочу дать не просто интерпретацию, но и тот метод решения проблем учения о трансфинитах, который, как я убедился, чужд современным математикам и игнорирование которого приводит их к тяжкому тупику «противоречий» и «парадоксов», заставляющему многих унывать и сетовать на ограниченность человеческого знания. Что человек знает маловато и что каждую крупинку знания приходится брать с бою, — это давно известно и против этого трудно спорить. Но раз мы уж решились обнять умом такие понятия, как «бесконечность», «предел», «трансфинитное число» и т. д. и т. д., то уж унывать нечего. Или вообще надо бросить заниматься математикой, или, если заниматься, то надо доводить ее до конца и не считать «парадоксы» каким–то провиденциальным пределом, запрещающим переходить в царство полного знания. Математики оперируют «бесконечностями» так, как, может быть, иной не оперирует своими ногами, чтобы ходить, или руками, чтобы работать. И раз хватило смелости «обнять необъятное», то давайте уж обнимать до конца и давайте ставить все точки над чтобы уяснить себе, наконец, полную логическую природу бесконечного.

Я утверждаю, что единственный метод, способный дать мысли полное овладение категорией бесконечности и категорией «множества», есть диалектический метод. И я покажу, как философ чисто диалектически выводит из первоначальных принципов то же самое, что математик находит постепенно и несистематично, барахтаясь в бездне математических построений и прибегая к единственному средству обобщения—к своеобразной индукции над эмпирически наблюдаемым логическим материалом. Мы увидим, как учение о трансфинитах с необходимостью, но уже строго систематически вытекает из основ мысли как таковой и как тут, в диалектике, мы сразу получаем метод для построения сначала аксиоматики, а потом и конкретного содержания всякой математической науки.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Хаос и структура"

Книги похожие на "Хаос и структура" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Алексей Лосев

Алексей Лосев - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Алексей Лосев - Хаос и структура"

Отзывы читателей о книге "Хаос и структура", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.