Роджер Пенроуз - Тени разума. В поисках науки о сознании

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Тени разума. В поисках науки о сознании"
Описание и краткое содержание "Тени разума. В поисках науки о сознании" читать бесплатно онлайн.
Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.
Для широкого круга читателей, интересующихся наукой.
Можно, впрочем, задать и иной вопрос. Предположим, что новая теория квантовой гравитации действительно окажется невычислимой теорией — в том, в частности, смысле, что она позволит нам сконструировать физическое устройство, способное решить проблему остановки. Будет ли этого достаточно для разрешения всех проблем, порожденных нашими размышлениями о доказательстве Гёделя—Тьюринга в первой части книги? Как ни удивительно, ответ — нет!
Попробуем разобраться, почему способность решить проблему остановки ничем нам не поможет. В 1939 году Тьюринг предложил одну важную концепцию, имеющую к этому вопросу самое непосредственное отношение, — концепцию оракула. Идея такова: оракул есть нечто (предположительно, воображаемый объект, существующий лишь в голове самого Тьюринга и вовсе не обязательно реализуемый физически), что действительно может решить проблему остановки. Так, если дать оракулу пару натуральных чисел q и n, то он через некоторое конечное время выдаст нам ответ ДА или НЕТ, в зависимости от того, завершится в конце концов вычисление Cq(n) или нет (см. §2.5). В §2.5 мы доказываем вывод Тьюринга о том, что такой оракул, действующий исключительно вычислительными методами, создать невозможно, однако там ничего не говорится о том, что оракул невозможно построить физически. Чтобы прийти к такому выводу, мы должны твердо знать, что физические законы являются по своей природе вычислительными — а мы этого не знаем, о чем, собственно, и идет, главным образом, речь во второй части. Следует также отметить, что физическая возможность создания оракула не является, насколько я могу судить, следствием из той точки зрения, которую я здесь отстаиваю. Как уже упоминалось, никто не требует, чтобы все проблемы остановки были доступны человеческому пониманию и проницательности, поэтому нет никаких оснований и полагать, что некое физически реализуемое устройство непременно справится со всеми этими проблемами своей физической реализуемости.
В дальнейшем обсуждении Тьюринг рассмотрел модификацию понятия вычислимости, когда оракула можно вызвать на любом желаемом этапе вычисления. Таким образом, машина с оракулом (выполняющим оракул-алгоритм) представляет собой самую обыкновенную машину Тьюринга, только к ее стандартным вычислительным операциям добавлена еще одна: «Вызвать оракул и спросить у него, завершается ли вычисление Cq(n); по получении ответа продолжать вычисление, учитывая полученный ответ». Оракул можно вызывать снова и снова, если появляется такая необходимость. Отметим, что машина с оракулом является точно таким же детерминированным объектом, как и обычная машина Тьюринга (это для иллюстрации того факта, что вычислимость и детерминизм суть совершенно разные вещи). В принципе, вселенная, которая функционирует детерминированно как машина с оракулом, точно так же возможна, как и вселенная, которая функционирует детерминированно как машина Тьюринга. («Игрушечные вселенные», описанные в §1.9 и в НРК, на с. 170, представляют собой, по сути, вселенные-машины-с-оракулом.)
Может ли оказаться так, что и наша собственная Вселенная функционирует как машина с оракулом? Любопытно, что с помощью приведенных в первой части книги аргументов оракул-машинная модель математического понимания «развенчивается» столь же успешно, как и аналогичная модель на основе машины Тьюринга, причем изменений почти не требуется. Нужно всего лишь взять доказательство из §2.5 и условиться, что запись «Cq(n)» обозначает теперь «выполнение q-й машиной с оракулом действия над натуральным числом n». Впрочем, лучше ввести другое обозначение, скажем, C'q(n). Как и в случае обычных машин Тьюринга, мы можем составить (вычислимым образом) пронумерованный список машин с оракулом. Что касается их спецификаций, единственной дополнительной особенностью является то, что мы должны, помимо прочего, учитывать, на каких этапах вычисления вызывается оракул; никакой новой проблемы такой учет не составит. Далее мы заменяем алгоритм A(q, n) из §2.5 оракул-алгоритмом A'(q, n), который, в соответствии с исходным допущением, олицетворяет собой всю совокупность доступных человеческому пониманию и человеческой проницательности средств, необходимых для однозначного установления факта незавершаемости операции C'q(n) оракула. В точности повторяя доказательство, приходим к следующему выводу:
G' Для установления математической истины математики не применяют заведомо обоснованные оракул-алгоритмы.
Отсюда следует неутешительное заключение: физический процесс, функционирующий как машина с оракулом, наших проблем также не решит.
Вообще говоря, весь процесс можно повторить, применив его к «машинам с оракулом второго порядка», которым позволяется вызывать при необходимости оракул второго порядка — который способен установить, завершится работа обычной машины с оракулом или нет. Как и в предыдущем случае, приходим к выводу:
G'' Для установления математической истины математики не применяют заведомо обоснованные оракул-алгоритмы второго порядка.
Очевидно, что этот процесс можно повторять снова и снова — подобно многократной гёделизации, описанной нами в связи с возражением Q19. Для каждого рекурсивного (вычислимого) ординала α вводится концепция машины с оракулом α-го порядка, и мы снова получаем все тот же вывод:
Gα Для установления математической истины математики не применяют заведомо обоснованные оракул-алгоритмы α-го порядка, где α — любой вычислимый ординал.
Окончательное следствие из всего этого несколько даже пугает. Получается, что нам предстоит отыскать невычислимую физическую теорию, способную заглянуть дальше, чем описание машин с оракулом любого вычислимого уровня (или, возможно, еще дальше).
Нисколько не сомневаюсь, что найдутся читатели, которые скажут, что вот уж тут-то мои рассуждения окончательно растеряли последние крохи правдоподобия, которые в них еще оставались! И, разумеется, такие чувства вполне понятны. Непонятно лишь нежелание хотя бы ознакомиться со всеми доказательствами, которые я уже в подробностях приводил ранее. Нужно просто вновь пройти по всем доказательствам в главах 2 и 3, заменяя в них машины Тьюринга на машины с оракулом α-го порядка. Не думаю, что такая замена как-то существенно повлияет на суть этих доказательств, но меня, если честно, приводит в содрогание перспектива только ради нее повторять их здесь заново. Следует, впрочем, указать на еще одно обстоятельство: нет никакой необходимости в том, чтобы человеческое понимание приобрело ту же мощь, что и какая угодно машина с оракулом. Как было отмечено выше, вывод G вовсе не обязательно предполагает, что человеческого понимания, в принципе, достаточно для того, чтобы решить любой конкретный случай проблемы остановки. Таким образом, все это не означает, что искомые физические законы в принципе должны непременно оказаться, более общими, нежели те, которыми описываются машины с оракулом любого вычислимого уровня (или хотя бы первого). Нам нужно лишь отыскать нечто, не являющееся эквивалентом любой конкретной машины с оракулом (включая сюда и машины с оракулом нулевого уровня, т.е. собственно машины Тьюринга). Возможно, эти физические законы опишут нечто просто-напросто иное.
7.10. Невычислимость в квантовой гравитации (2)
Вернемся к квантовой гравитации. Необходимо подчеркнуть, что в настоящее время общепринятой теории квантовой гравитации не существует — нет даже сколько-нибудь приемлемых кандидатов. Есть зато множество самых разных и порой совершенно восхитительных гипотез{94}. Та, которую я хочу сейчас представить, требует, как и подход Героха—Хартла, учета квантовых суперпозиций различных пространств-времен. (Многие гипотезы говорят лишь о суперпозициях трехмерных пространственных геометрий, что несколько отличается.) Предположение (за авторством Дэвида Дойча{95}) заключается в том, что в суперпозициях должны участвовать не только «правильные» пространственно-временные геометрии, в которых время ведет себя достаточно благоразумно, но и «неправильные» пространства-времена, в которых имеются замкнутые времениподобные линии. Такое пространство-время представлено на рис. 7.15. Времениподобная линия описывает возможную историю частицы (классической), а «времениподобной» она называется потому, что во всех точках локального светового конуса линия всегда направлена внутрь конуса, т.е. локальная абсолютная скорость не превышается — в соответствии с требованием теории относительности (см. §4.4). Смысл замкнутости времениподобной линии в том, что мы можем представить себе «наблюдателя»[57], для которого такая линия является мировой линией, т.е. линией, описывающей в данном пространстве-времени историю его собственного тела. Такой наблюдатель по прошествии некоторого конечного времени (согласно его восприятию) окажется в своем прошлом (перемещение во времени!). У него появляется возможность сделать что-нибудь такое (при условии, что он обладает какой-никакой «свободой воли»), чего он раньше никогда не делал, что неизбежно ведет к противоречию. (Обычно в таких умопостроениях наблюдатель убивает собственного дедушку «прежде», чем на свет появится его же отец — или совершает что-нибудь еще столь же волнительное.)
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Тени разума. В поисках науки о сознании"
Книги похожие на "Тени разума. В поисках науки о сознании" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Роджер Пенроуз - Тени разума. В поисках науки о сознании"
Отзывы читателей о книге "Тени разума. В поисках науки о сознании", комментарии и мнения людей о произведении.