» » » » Сэм Лойд - Самые знаменитые головоломки мира


Авторские права

Сэм Лойд - Самые знаменитые головоломки мира

Здесь можно скачать бесплатно "Сэм Лойд - Самые знаменитые головоломки мира" в формате fb2, epub, txt, doc, pdf. Жанр: Детская образовательная литература, издательство ООО «Фирма «Издательство ACT», год 1999. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Сэм Лойд - Самые знаменитые головоломки мира
Рейтинг:
Название:
Самые знаменитые головоломки мира
Автор:
Издательство:
ООО «Фирма «Издательство ACT»
Год:
1999
ISBN:
5-237-02034-8
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Самые знаменитые головоломки мира"

Описание и краткое содержание "Самые знаменитые головоломки мира" читать бесплатно онлайн.



Сборник математических задач и увлекательных головоломок, принадлежащий перу одного из классиков этого жанра Сэма Лойда, несомненно доставит большое удовольствие всем любителям занимательной математики.






[Известно, что в случае круга с помощью п прямых разрезов можно получить максимум (п2 + п)/2 + 1 частей. Однако в случае полумесяца это число возрастает до (п2+ 3п)/2+ 1. – М. Г.]


102. Ответ показан на рисунке.


103. Для того чтобы собрать 100 картофелин, необходимо преодолеть расстояние в 101 000 футов, или чуть больше 19 миль!

Для Гарри лучшая стратегия состоит в том, чтобы выбрать 99-ю картофелину. Том, бегая быстрее Гарри на 2,04 %, возьмет первую картофелину, Гарри – вторую, Том – третью и т. д. Однако Том бегает не настолько быстрее Гарри, чтобы забрать две соседние картофелины. Гарри потребуется преодолеть 49 980 футов, чтобы принести свои 49 картофелин. За то же самое время Том пробежит 50 999,592 фута, а поскольку для того, чтобы собрать все 50 картофелин, он должен покрыть расстояние в 51 000 футов, Гарри выиграет с преимуществом менее полуфута!


104. В этом простом примере «алгебры в картинках» мывстречаемся с фундаментальными принципами подстановки и добавления одинаковых величин в обе части равенства, не нарушающих, так сказать, равновесия. Это показывает справедливость аксиомы, что две какие-то величины, равные порознь третьей величине, равны и между собой.

На первом рисунке мы видим, что волчок и 3 кубика равны 12 шарикам. Из второго рисунка явствует, что один волчок равен по весу кубику и 8 шарикам. Добавим теперь 3 кубика на каждую чашу вторых весов. Поскольку добавление равных по весу количеств к обеим сторонам не нарушает равновесия, мы все еще имеем равенство в весе двух чаш. Но теперь левая чаша весов идентична левой чаше весов, расположенных выше. Следовательно, мы должны сделать вывод, что веса двух правых чаш также равны между собой, то есть что 4 кубика и 8 шариков весят столько же, сколько и 12 шариков. Значит, 4 кубика весят столько же, сколько и 4 шарика. Короче говоря, вес кубика совпадает с весом шарика. Второй рисунок говорит нам о том, что волчок уравновешивается кубиком и 8 шариками; поэтому мы заменяем кубик на шарик и находим, что вес волчка равен весу 9 шариков.


105. В восьмеричной системе 1906 запишется как 3562, то есть 2 единицы, 6 восьмерок, 5 раз по 64 и 3 раза по 512. Самый простой способ перехода к этой записи состоит в том, что сначала мы делим 1906 на 512 и получаем 3 и 370 в остатке. Далее мы делим 370 на 64, получая 5 и 50 в остатке. Затем мы делим 50 на 8, получая 6 и последний остаток – 2, последнюю цифру ответа. Выписывая все результаты деления слева направо, мы и получаем искомую запись. Если бы мы захотели записать 1906 в семеричной системе, то нужно было бы делить это число на соответствующие степени семерки.


106. В путь отправилось 900 участников, которые разместились в 100 вагонах по 9 человек в каждом.


107.



После того как исчезли 9 монахинь, остальные расположились следующим образом:


108. Число в конце каждого абзаца означает количество операций, совершенных в этом абзаце.

В большой бочке содержится 63 галлона воды, а в малой – 31 1/2 галлона вина. Наполняем 3 кувшина в 10 галлонов вином, выливаем остальные 1 1/2 галлона в 2-галлонную меру, опустошив тем самым малую бочку (4).

С помощью 4-галлонной меры наполняем малую бочку из большой, оставляя в итоге 1/2 галлона в 4-галлонной мере. Отдаем эти 1/2 галлона верблюду № 1. С помощью 4-галлонной меры возвращаем 28 галлонов воды из малой бочки в большую. Выливаем 1/2 галлона вина из 2-галлонной меры в 4-галлонную. Выливаем 2 галлона воды из малой бочки в 2-галлонную меру и возвращаем их в большую бочку. Переливаем оставшиеся 1/2 галлона воды из малой бочки в 2-галлонную меру и даем их верблюду № 2. Переливаем 1 1/2 галлона вина из 4-галлонной меры в 2-галлонную (37).

Повторяем все операции предыдущего абзаца еще 11 раз, так что 6 верблюдов получат по две полугаллонные порции воды каждый, а 6 других получат по две полуторагаллонные порции. Однако при 10-м и 11-м повторении вместо того, чтобы возвращать 2 галлона в большую бочку, отдадим их любым двум верблюдам, которые уже получили по две полугаллонные порции. Теперь уже 8 верблюдов получили по 3 галлона, а 4 верблюда – по 1 галлону; кроме того, в большой бочке осталось 35 галлонов (407).

Наполним малую бочку из большой с помощью 4-галлонной меры и дадим 1/2 галлона верблюду № 13. Переливаем 3 галлона из большой бочки в 4-галлонную меру (18).

Возвращаем все вино в большую бочку. Опустошаем малую бочку, перелив ее содержимое в три 10-галлонных кувшина, а оставшиеся 1/2 галлона перельем в 2-галлонную меру. Вернем содержимое трех кувшинов в малую бочку и перельем 1 1/2 галлона из 2-галлонной меры в кувшин № 1 (12).

Наполним 2-галлонную меру из 4-галлонной, оставляя 1 галлон в 4-галлонной мере. Наполним малую бочку из 2-галлонной меры и дадим оставшиеся 1/2 галлона верблюду № 13. Дадим пяти верблюдам по 2 галлона каждому, после чего все верблюды будут напоены (13).

Наполним 2 пустых кувшина из малой бочки и перельем оставшиеся 1/2галлона в кувшин № 1. Вернем содержимое кувшинов № 2 и 3 в малую бочку (5).

Перельем 1 галлон из 4-галлонной меры в кувшин № 2. Нальем 6 галлонов вина в кувшин № 3 с помощью 2-галлонной и 4-галлонной мер. Выльем 1 галлон из кувшина № 2 в 4-галлонную меру и наполним эту меру вином из кувшина № 3. Выльем содержимое 4-галлонной меры в кувшин № 2. Перельем 2 галлона воды из малой бочки в кувшин № 2 (10).

Теперь каждый из 13 верблюдов получил по 3 галлона воды, один из 10-галлонных кувшинов содержит 3 галлона воды, второй – 3 галлона вина и третий – смесь из 3 галлонов воды и 3 галлонов вина. В большой бочке находится 25 1/2 галлонов вина, а в малой – 18 галлонов воды. Общее число операций составляет 506.

[В одном из своих интервью Генри Э. Дьюдени упоминает о том, как С. Лойд в связи с этой задачей обращался к нему за помощью. Дело в том, что Лойд предложил своим читателям денежный приз за лучшее ее решение и хотел избежать выплаты, найдя собственное решение, превосходящее все им полученные. Дьюдени нашел решение в 521 ход. В дальнейшем он снизил число ходов до 506, так что Дьюдени сэкономил Лойду немалую сумму. – М. Г.]


109. Многие даже искушенные математики нередко впадают в ошибку, исходя из того, что имеются 24 отправные и 24 конечные точки. Они утверждают, что правильным ответом будет (24)2 = 576 способов. Однако они проглядели разветвляющиеся пути, которые дают 252 способа достигнуть центра С и столько же способов вернуться назад к граничным W. Поэтому правильным ответом будет (252)2 = 63 504 способа.


110. Если бы в сиамском аквариуме было столько рыб, сколько я получил различных ответов, то там разыгралась бы битва века!

Я склонен считать правильным следующее решение. Три маленькие рыбы отвлекают внимание каждой из трех больших рыб, а остальные 4 дьявольские рыбы в 3 мин уничтожают четвертую королевскую рыбу. Затем 5 маленьких рыб набрасываются на одну большую и убивают ее за 2 мин 24 с, пока остальные маленькие рыбы сражаются с другими большими.

Очевидно, что если бы каждой из оставшихся групп помогла еще одна рыба, они бы закончили свое дело за то же самое время, так что у каждой большой рыбы сил осталось бы ровно столько, чтобы привлекать внимание маленькой рыбы в течение 2 мин 24 с. Следовательно, если большую рыбу атакуют 7 маленьких рыб вместо одной, то им потребуется 1/7 этого времени, или 20 4/7 с.

Если распределить теперь силы маленьких рыб для атаки на оставшихся двух больших рыб (7 на одну и 6 на другую королевскую рыбу), то для уничтожения последней большой рыбы в конце 20 4/7 с потребуется усилие, с которым сможет справиться одна маленькая рыба. Но поскольку вместо одной маленькой рыбы. На последнюю королевскую рыбу набросятся все 13 дьявольских рыб, они справятся с ней за 713 этого времени, то есть за 153/91 с.

Складывая теперь все промежутки времени (3 мин, 2 мин 24 с, 204/7 с, 153/91 с), мы получим продолжительность всей битвы – 5 мин 462/13 с.


111. Согласно заданным условиям, одна монета с круглой дыркой стоит 15/11 бит, одна монета с квадратной дыркой стоит 16/11 бит и одна монета с треугольной дыркой стоит 17/11 бит. Щенка стоимостью в 11 бит можно, следовательно, купить за одну монету с квадратной дыркой и 7 монет с круглыми дырками.


112. Круг сыра делится на 2 части с помощью одного разреза, на 4 – с помощью второго, на 8 – с помощью третьего, на 15 – с помощью четвертого, на 26 – с помощью пятого и на 42 части – с помощью шестого разрезов.

[Эти числа равны максимальному количеству частей, порождаемых каждым последовательным разрезом выпуклого тела. С помощью этой последовательности нетрудно вывести следующее кубическое уравнение, выражающее максимальное число частей как функцию числа разрезов п: (п3+5п)/6+ 1= число частей. – М. Г.]


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Самые знаменитые головоломки мира"

Книги похожие на "Самые знаменитые головоломки мира" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Сэм Лойд

Сэм Лойд - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Сэм Лойд - Самые знаменитые головоломки мира"

Отзывы читателей о книге "Самые знаменитые головоломки мира", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.