Джей Форрестер - Основы кибернетики предприятия

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Основы кибернетики предприятия"
Описание и краткое содержание "Основы кибернетики предприятия" читать бесплатно онлайн.
В книге излагается метод динамического моделирования промышленных предприятий и промышленно-сбытовых систем с помощью электронно-вычислительных машин; рассмотрено применение этого метода для усовершенствования организационных форм и улучшения руководства предприятиями, а также для подготовки и обучения руководящего персонала.
Книга рассчитана на широкие круги инженеров-экономистов, работников научно-исследовательских институтов, преподавателей вузов и руководящих работников промышленности.
Ввиду организационного риска и неуверенности в подборе подходящего квалифицированного человека нет также уверенности в первоначальном успехе любой программы динамического моделирования. Однако такой же риск имеется во многих других случаях, где потенциальные выгоды не так велики. Здесь идет игра на ставки, сравнимые с обычной ожидаемой предельной прибылью в промышленности.
Приложение A
ИНТЕРВАЛ РЕШЕНИЯ УРАВНЕНИЙ
В разделе 6.5 рассмотрены правила выбора интервала DT при решении уравнений модели динамической системы. Следовало бы вновь прочесть этот раздел, прежде чем переходить к настоящему приложению.
Выбор интервала зависит от взаимоотношений уровней и темпов потоков в системе. Уровни взаимосвязаны с входящими и исходящими потоками через среднюю величину запаздывания, которое они испытывают в данном уровне. Такое суждение правильно в отношении всех уровней, а не только тех, которые проявляются в формах, называемых нами запаздываниями. Когда интервал решения становится слишком большим, содержимое уровня может оказаться сравнимым с тем количеством, которое поступает или исходит из уровня в течение данного интервала времени. Если это случается, то либо интервал решения слишком продолжителен, либо уровень, о котором идет речь, потерял свое значение в системе и может быть опущен из рассмотрения (почтовые запаздывания не учитывались при рассмотрении модели производственно-сбытовой системы в главе 13).
Влияние изменения интервала решения можно проследить, рассмотрев уравнения запаздываний первого порядка (см. главу 8, уравнения 8–1 и 8–2).
LEV.K = LEV.J+(DT)(IN.JK-OUT.JK)
.
Предположим, что запаздывание вначале отсутствует; при этом темпы входящего и исходящего потоков равны нулю; скачок темпа входящего потока в одну единицу за единицу времени имеет место в момент времени, равный нулю. На рис. A-1 показаны итоговые кривые при различных отношениях величины интервала решения ко времени запаздывания, DT/DEL. По горизонтальной оси отложена отвлеченная величина отношения времени к величине запаздывания DEL.
Рис. A-1. Реакция запаздывания первого порядка на ступенчатый ввод при различных отношениях интервала решения DT к запаздыванию DEL.Если интервал решения пренебрежимо мал, то практически в результате получается экспоненциальная кривая, показанная на графике для интервала, равного 0. Когда DT составляет половину от DEL, то в первой расчетной точке уровень, как и величина выходного темпа, достигает половины своего конечного значения. Остающаяся разница между выходными и входными темпами сокращается за каждый интервал времени наполовину.
Если интервал решения равен времени запаздывания, то уровень и темп исходящего потока достигают своих конечных величин к моменту окончания первого этапа вычислений. Экспоненциальное запаздывание приобретает некоторые черты, характерные для запаздывания в каналах снабжения. (Однако таким способом нельзя определять общее запаздывание в каналах снабжения.)
Для еще больших интервалов решений первый вычисленный уровень (как для кривой при DT=3/2 времени запаздывания) превысит его установившуюся величину. Темп выхода превысит темп входа. На следующем этапе вычислений величина уровня получится меньше своего установившегося значения. Если интервал решения находится между DEL и 2 (DEL), то в кривой выхода возникнут затухающие колебания.
При DT, равном 2 (DEL), при появлении скачка на входе на выходе возникнут незатухающие колебания. Если интервал решения DT больше, чем 2 (DEL), то колебания на выходе величины будут непрерывно возрастающими.
Кривая на рис. А-1 для интервала решения, равного половине постоянной запаздывания, вероятно, является приемлемым приближением, если только некоторые из запаздываний в системе приблизятся к выбранному значению интервала решения.
Следует иметь в виду, что запаздывание третьего порядка состоит из трех запаздываний первого порядка. Если для каждого из них принимать отношение DTIDEL — 1/2, то интервал решения в этом случае должен быть равен или меньше 1/6 от постоянной времени запаздывания любого экспоненциального запаздывания третьего порядка.
Критерий, использованный здесь для выбора интервала решения, обусловлен структурой системы и ее внутренними динамическими свойствами. Выбор величины интервала между вычислениями в модели нельзя связывать с таким фактором, как периодичность, с которой возможен сбор информации в моделируемой реальной системе. Интервалы решения, выбранные по предложенной здесь методике, будут гораздо короче тех, которые упоминались в литературе по экономическим моделям, и иногда составляли год, даже тогда, когда изучались кратковременные ежегодные изменения в системе.
Влияние величины интервала решения может быть определено эмпирически, с помощью ряда проигрываний модели с тем, чтобы выяснить, в какой мере величина интервала решения сказывается на результатах. Это было сделано на модели (рис. 15-9) фирмы, выпускающей детали электронного оборудования с учетом ранее применявшихся методов управления при величине TBLAF, равной 40 неделям. Результаты приведены на рис. A-2.
Рис. А-2. Влияние изменения интервала решения.Проигрывания проводились при величине интервала DT, равной 0,125 недели, 0,25 (как и в главе 15), 0,5, 1,0, 1,5 и 2,0 недели. Величины, полученные при интервалах DT в 0,125 недели и 0,25 недели, настолько близки друг к другу, что их трудно различить на графиках. Проигрывание для DT, равного 2,0 недели, в числовом отношении было неустойчивым, и на 76-й неделе величины превысили значения, допускаемые разрядностью регистров вычислительной машины.
Этот конкретный анализ с помощью счетно-решающего устройства должен быть особенно чувствителен к влиянию величины интервала решения, так как была использована ступенчатая входная функция, а колебание системы было «свободно протекающим», без наличия управляющей функции для регулирования периодичности. Даже при таком условии время наступления третьего максимума заключено в пределах одной, 335-й недели для каждой из кривых.
Величина амплитуды при различных интервалах решения изменяется несколько больше, чем период колебаний; относительные величины амплитуды после двух полных периодов колебаний приведены в табл. А-1.
Таблица A-1. Влияние интервалов решений на амплитуду колебаний Интервал решения (недели) Величина третьего максимума (в % от начального значения) 0,125 148 0,25 149,9 0,5 153,9 1,0 163,3 1,5 174,8Отношение третьего максимума к первому составляет 0,79 для интервала решения в 0,125 недели, 0,85 — для интервала в 1,0 недели и 0,90 — для интервала в 1,5 недели. Эти различия несущественны по сравнению с теми изменениями результатов в различных условиях, которые наблюдались в главе 15.
Некоторые постоянные времени в модели главы 14 (DCPF, DMBLF и DSF) равны 1 неделе, то есть они меньше самого большого интервала решений в табл. А-1. Как видно из таблицы, ошибка в вычислении начинает довольно быстро увеличиваться. При интервале решения в 2 недели некоторые типы внутренних взаимодействий приводят к неустойчивому решению. Зависимость между интервалом решения и величиной третьего максимума кривой невыполненных заказов BLTPC графически представлена на рис. A-3. Величина BUT PC измеряется в процентах от ее первоначального значения.
Рис. A-З. Результаты расчета в зависимости от величины интервала решения.Изложенное свидетельствует о том, что обычно можно выбирать интервал решений DT, равный или меньший 0,5 недели (меньше половины самого короткого времени запаздывания первого порядка, в данном случае равного 1 неделе для DCPF, DMBLF и DSF). Такой выбор величины DT дает численные результаты, незначительно отличающиеся от тех, которые получились бы при меньшей величине DT (см. рис. А-2).
Приложение B
ВЫРАВНИВАНИЕ ИНФОРМАЦИИ
Темпы потоков в промышленных и экономических системах обычно нерегулярны. Решения, порождающие эти потоки, принимаются под влиянием множества локальных событий. Нерегулярность потоков обусловливается разнообразными причинами: различиями в поведении людей, нарушением будничного ритма в предвыходные дни, угрозой забастовок, погодой, праздниками, ошибками, возникающими при сборе и обработке данных, использованием неопределенных и непостоянных принципов при выборе решений, зависимостью цен на товары от величины партии поставки, что стимулирует увеличение размера заказов, затратами на запуск и характером технологического процесса, когда поточное производство заменяется партионным, различием в продолжительности отчетных периодов (например, отдельных месяцев), событиями внутренней и внешнеполитической жизни, влияющими на настроение народа, практикой соблюдения заранее установленной частоты усреднения информации и принятия решений.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Основы кибернетики предприятия"
Книги похожие на "Основы кибернетики предприятия" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Джей Форрестер - Основы кибернетики предприятия"
Отзывы читателей о книге "Основы кибернетики предприятия", комментарии и мнения людей о произведении.