» » » » Моррис Коэн - Введение в логику и научный метод


Авторские права

Моррис Коэн - Введение в логику и научный метод

Здесь можно купить и скачать "Моррис Коэн - Введение в логику и научный метод" в формате fb2, epub, txt, doc, pdf. Жанр: Философия, издательство Социум, год 2010. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Моррис Коэн - Введение в логику и научный метод
Рейтинг:
Название:
Введение в логику и научный метод
Автор:
Издательство:
неизвестно
Жанр:
Год:
2010
ISBN:
978-5-91603-029-7
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Введение в логику и научный метод"

Описание и краткое содержание "Введение в логику и научный метод" читать бесплатно онлайн.



На протяжении десятилетий эта книга служила основным учебником по логике и научному методу в большинстве американских вузов и до сих пор пользуется спросом (последнее переиздание на английском языке увидело свет в 2007 г.). Авторам удалось органично совместить силлогистику Аристотеля с формализованным языком математической логики, а методология познания излагается ими в тесной связи с логикой. Освещаются все стандартные темы, преподаваемые в базовом курсе по логике, при этом их изложение является более подробным, чем в стандартных учебниках. Как синтетический курс логики и научной методологии не имеет аналога среди отечественных учебников.

Значительная часть книги посвящена исследованию проблем прикладной логики: экспериментальным исследованиям, индукции, статистическим методам, анализу оценочных суждений.

В книге дается анализ предмета логики и природы научного метода, рассмотрение той роли, которую методы логики играют в научном познании, а также критика многих альтернативных подходов к истолкованию логики и науки в целом. В этом отношении она представляет собой самостоятельное философское произведение и будет интересна специалистам в области философии и методологии науки.

Для преподавателей логики, философии науки, теории аргументации и концепций современного естествознания, студентов, изучающих логику и методологию науки.






Используем буквы р, q, r для обозначения следующих простых суждений данного аргумента:

р ≡ каждая отдельная расовая группа характеризуется индивидуальной культурой;

q ≡ все нации отличаются друг от друга в культурном смысле;

r ≡ национальные различия не совпадают, полностью или частично, с расовыми.


Посылки и заключение данного аргумента можно представить следующим образом:

a.  p ⊃ ( qr )

b.  q ′ . r

c.  p


Суждения а, b и с отличаются друг от друга логической формой, и символьная запись помогает это отличие проявить. Обоснованность аргумента зависит от структуры или формы суждений а, b и с , поскольку заключение следует из посылок только если истинно: d. ( а . b ) ⊃ c

Читателю следует отметить, что можно провести важное различие между отношением антецедента условного суждения к его консеквенту (как в суждении а ), с одной стороны, и отношением между посылками обоснованного аргумента к заключению (как в суждении d ) – с другой. Для установления отношения антецедента к консеквенту нужно предоставить материальное (или фактическое) основание, тогда как для установления отношения между посылками и заключением такое основание неуместно и невозможно, поскольку такое отношение имеет место, только когда один из терминов этого отношения логически или аналитически содержится в другом. Однако у этих двух отношений есть и общая черта, заключающаяся в том, что ни то, ни другое не имеет места в случае истинности антецедента или посылки и ложности консеквента или заключения. Именно эта общая черта обозначается связкой «если… то» или знаком «⊃». Читателю при этом следует помнить, что две вещи, схожие в одном смысле, могут быть различными в другом, равно как и две вещи, отличные друг от друга в одном смысле, могут оказаться в чем-то другом схожими.

Простые суждения

Разложение сложных суждений на составляющие их суждения явным образом относится к логике. Однако разложение предложения на его словесные элементы является задачей грамматики. Логически суждения предшествуют словам в том смысле, что суждения не производятся путем объединения слов, тогда как значения слов являются производными только от контекста конкретного суждения. В конечном счете значение слова определяется элементарными суждениями такой формы, как суждения «это – трюфель», «это – пурпурный цвет» и т. п., где слово «это» может быть заменено на определенный указательный жест. Однако, несмотря на то что суждения не могут быть разложены на словесные составляющие, внимание к этим составляющим зачастую способствует логическому анализу или логической классификации суждений. Рассмотрим следующие суждения:

1. Архимед был скромным.

2. Архимед был математиком.

3. Архимед был более великим математиком, чем Евклид.

Согласно традиционному подходу, каждое из этих суждений является категорическим, а его составные элементы – это субъект, предикат и связка. Любое суждение, такое как «Архимед любил математику» или «Архимед бежал голым по улице и кричал «Эврика!»», может быть разложено и трансформировано: «Архимед был любящим математику» или «Архимед был бегущим голым по улице» и т. д. Можно задаваться вопросом о том, не изменяет ли такая трансформация значения суждения. Однако в любом случае суждения можно анализировать и иными способами, отличными от традиционного подхода. Так, используя в качестве модели суждение 2, можно рассматривать любое суждение как утверждающее, что некоторый объект является членом определенного класса. Тогда получится, что в суждении 1 утверждается, что Архимед был членом класса скромных сущностей, а в суждении 3 – что он был членом в классе математиков, более великих, чем Евклид. Данный способ анализа соотносится с классическим так же, как взгляд с точки зрения объема соотносится со взглядом с точки зрения содержания.

Совершенно иным способом анализа суждений является рассмотрение их как утверждающих определенное отношение между двумя или более объектами. Так, в нашем первом суждении утверждается отношение между Архимедом и скромностью (отношение субстанции и признака), в нашем втором суждении утверждается так называемое отношение принадлежности к классу между Архимедом и классом математиков. Таким образом, суждения типа «Архимед решил задачу царя Гиерона» могут быть разложены для получения таких суждений, как «Архимед находился в отношении решателя к задаче царя Гиерона».

Вполне ясно, что ни один из этих способов анализа не может считаться единственно верным. Эти подходы также не являются и взаимоисключающими. Тем не менее, каждый из этих способов анализа подходит для одних суждений лучше, чем для других. Можно только с большой натяжкой сказать, что в суждении «автор «Макбета» есть автор «Гамлета»» «автор «Гамлета» означает признак того, что именуется «автором «Макбета»». Более подходящим представляется способ рассмотрения данного суждения как утверждающего отношение тождества в денотации, несмотря на различие в содержании, или коннотации.

В логическом смысле еще более важно отметить, что если мы не проведем различия между суждениями о принадлежности к классу, с одной стороны, и суждениями, представляющими какие-либо другие отношения, – с другой, то мы упустим важный фактор, оказывающий влияние на природу импликации. Так, в то время как одни отношения являются транзитивными, отношение принадлежности к классу таковым не является. Суждение «Архимед был более великим математиком, чем Евклид, и Евклид был более великим математиком, чем Аристотель» имплицирует суждение «Архимед был более великим математиком, чем Аристотель». Однако суждение «Архимед был гражданином Сиракуз, и Сиракузы были членом греко-карфагенского союза» не имплицирует суждения «Архимед был членом греко-карфагенского союза».

В главе VI мы систематически изучим отношение между классами и логические свойства отношений в целом.

Родовые общие суждения

Рассмотрим суждение «все математики – квалифицированные логики». Его нельзя просто отнести к суждениям субъектно-предикатного вида, поскольку в нем определенному индивиду не предицируется какая-либо характеристика или качество. В нем также не утверждается и то, что индивид является членом некоторого класса. Также не будет корректным сказать, что в нем утверждается некоторое отношение между одним индивидом и другим индивидом или несколькими индивидами. В нем утверждается особое отношение включения между двумя классами. Суждения об отношениях между классами, т. е. о полном или частичном включении (или исключении) одного класса из другого, называются родовыми общими суждениями. Мы уже указали на то, каким должен быть правильный анализ таких суждений, когда рассматривали анализ категорических суждений в предыдущем разделе. Попытаемся теперь прийти к тому же самому заключению с другой стороны.

«Архимед был математиком», «Евклид был математиком», «Птолемей был математиком» – все эти суждения обладают общей формой. Они отличаются только в том, что в качестве субъектов в них выступают различные термины. Теперь рассмотрим выражение «х является математиком». Оно не является суждением, поскольку не может быть истинным или ложным. Однако из него можно получить суждения, подставляя различные значения на место переменной х. Все суждения, полученные таким путем, будут обладать общей формой. Выражение, содержащее одну или более переменную и выражающее суждение, если переменным придаются значения, называется пропозициональной функцией.

Мы можем варьировать не только субъект, но и другие термины такого суждения. Изменив отношение в суждении «Архимед был убит римским солдатом», мы получаем суждение «Архимед был восхвален римским солдатом», «Архимед был двоюродным братом римского солдата» и т. д. Если мы выразим отношение переменной R, то получим пропозициональную функцию: «Архимед R римский солдат». (Данную запись следует читать как «Архимед находится в отношении R к римскому солдату».) Варьируя в подобной манере термины и отношения в суждении и выражая их с помощью переменных, мы можем проявить логическую форму или структуру в ее точном виде.

Когда мы утверждаем суждение «все математики – квалифицированные логики», мы хотим сказать, что если любой индивид является математиком, то он также является квалифицированным логиком. Данное отношение можно выразить через импликацию между суждениями, полученными с помощью пропозициональных функций, следующим образом:

[Для всех значений х ( х является математиком) ⊃ ( х является квалифицированным логиком)],


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Введение в логику и научный метод"

Книги похожие на "Введение в логику и научный метод" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Моррис Коэн

Моррис Коэн - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Моррис Коэн - Введение в логику и научный метод"

Отзывы читателей о книге "Введение в логику и научный метод", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.