» » » Яков Гегузин - Капля


Авторские права

Яков Гегузин - Капля

Здесь можно скачать бесплатно "Яков Гегузин - Капля" в формате fb2, epub, txt, doc, pdf. Жанр: Физика, издательство «НАУКА», год 1973. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Капля
Издательство:
«НАУКА»
Жанр:
Год:
1973
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Капля"

Описание и краткое содержание "Капля" читать бесплатно онлайн.








Если валик совершает равномерное движение, то время, необходимое для его перемещения от места прокола до диа­метрально противоположной точки, где валик сольется в каплю (а это и есть время взрыва), τ ≈ πR/υ .

Таким об­разом:

τ ≈ πR(hρ/4α)1/2

Итак, элементарная теория построена, найдены формулы, определяющие r и τ. Из этой теории следует, например, что если водяной пузырь имеет радиус R = 1 см, а пленка, которая его образует, имеет толщину h= 10 мк = 10-3 см, то через τ ≈ 5.10-3сек после момента прокола пузырь должен превратиться в каплю, радиус которой должен быть около 1 мм.

Теперь о фактах. Известны два великолепных опыта, с результатами которых можно сопоставить предсказания элементарной теории. Один из этих опытов был постав­лен американским ученым В. Ф. Ранцем, другой ленин­градским физиком М. О. Корнфельдом.

Ранц проверял, действи­тельно ли при разрушении жидкой пленки образуется валик, который движется с по­стоянной скоростью. На жест­кий обод он натягивал тон­кую водяную пленку, прока­лывал ее и с помощью чувст­вительной методики следил за тем, как со временем меня­ется радиус отверстия.


 

Судьба пузыря на соломинке, проби­того металлическим стерженьком


Он убедился, что валик действи­тельно образуется, радиус отверстия меняется с постоянной скоростью, определил эту скорость и, зная толщину пленки, вычислил поверхно­стное натяжение жидкости по формуле

α = hρυ2/4 ,

которая представляет собой записан­ную иным образом формулу для скорости движения вали­ка. Концы с концами сошлись, величина поверхностного на­тяжения оказалась разум­ной. Результат этого опыта подтверждает одну из основ­ных идей элементарной тео­рии взрыва пузыря, но окон­чательным подтверждением служить не может, так как измерения проводились с пленкой, а не с пузырем и образования конечной капли Ранд не наблюдал.

М. О. Корнфельд количественных измерений не произ­водил, но зато тщательно проследил за тем, что происхо­дит с пузырем от момента прокола до его полного исчезно­вения. С помощью специального приспособления он про­бивал пленку пузыря и, воспользовавшись техникой фотографирования в импульсном режиме, получил фотогра­фии разрушающегося пузыря на всех стадиях его исчезно­вения. Оказалось, что вначале все происходит в согласии с предположениями, которые положены в основу элемен­тарной теории: отверстие расширяется, и вдоль его конту­ра образуется валик. Однако вскоре где-то на полпути возникают «сопутствующие» процессы, не учтенные теори­ей. От валика отделяются водяные стерженьки, которые, как и полагается стерженькам, распадаются на отдельные капли. Оказывается, что предполагающаяся теорией одна крупная капля не возникает, а возникает их множество. Создается впечатление взрыва, порождающего множество капель-осколков. Фотографии Корнфельда (см. предыдущий рис.) это великолепно иллюстрируют.

Хочется обратить внимание еще на одно «сопутствующее» явление, которое отлично иллюстрируется фотографиями и качественно объясняется полученными ранее формула­ми. Толщина пленки висящего на соломинке мыльного пузыря вследствие стекания жидкости под влиянием силы тяжести внизу больше, чем вверху. Так как скорость

движения велика

υ≈ 1 / h1/2

то в нижней части валик движется медленнее, чем в верхней. Это приводит к повороту отверстия в проколотом пузыре. Поворот плоскости, в ко­торой расположен валик, относительно соломинки отчет­ливо виден на фотографиях.

В появлении большого количества капель при разру­шении пузыря можно убедиться средствами более доступ­ными, чем те, которые использовал Корнфельд. Можно по­ступить, например, так. Стоя в реке по грудь в воде, быст­рым движением рассечь воду рукой. Вскоре на поверхно­сти воды возникнет много пузырей. Если приблизить к ним руку, она покроется множеством маленьких капель — их число значительно больше, чем число пузырей, которые лопнули под ладонью.

Явление оказалось богаче пашей фантазии. После опы­тов Корнфельда есть основание для построения более точ­ной и строгой теории.


Дождь на оконном стекле


Если посмотреть во время дождя на окно, можно заметить, что дождевые капли, ударяясь об оконное стекло, часто не прилипают к нему. Они сначала движутся в направлении, определяемом их свободным полетом, а потом начинают ползти отвесно вниз. Очень часто движущаяся капля ос­тавляет за собой влажный след. Со временем он распа­дается на капельки, которые оказываются столь малыми, что вначале покоятся как бы приклеенные к стеклу. Но вскоре случайная дождевая капля покрупней столкнется с одной из них, захватит ее и вместе с ней поползет отвесно по стеклу, оставляя за собой новый след.

В этом явлении многое нуждается в объяснении. Надо понять, какие капли ползут и какие застывают, приклеив­шись к стеклу? Почему остается за каплей след? И всегда ли он остается?

Прежде чем объяснить, что происходит с дождевой кап­лей на отвесном оконном стекле, рассмотрим поведение капли на гладкой поверхности твердого тела, которая с горизонтом образует некоторый угол г]з. Если бы на глад­кой поверхности располагалась не жидкая капля, а, ска­жем, твердый кубик, происходило бы следующее. До не­которого значения угла я(з кубик по поверхности не двигал­ся бы, а затем, при дальнейшем увеличении угла, он начал бы скользить по поверхности. Об этом подробно рассказы­вают в школе на уроках физики, говоря, что на кубик дей­ствуют две силы: сила трения и проекция силы тяжести на направление возможного движения кубика по наклонной плоскости. Эти силы действуют в противоположных на­правлениях, но сила трения не зависит от наклона плос­кости, а проекция силы тяжести с увеличением угла нак­лона растет. И когда угол наклона превзойдет тот, при ко­тором эта проекция станет равной силе трения, кубик нач­нет скользить по поверхности.

Теперь вернемся к капле. Схематически здесь все так же, как в случае твердого кубика: есть сила тяжести, есть и сила, подобная силе трения, только в случае капли эта сила отличается некоторой особенностью, так как капля не скользит, а переливается по поверхности. По наклон­ной поверхности жидкая капля перемещается, подобно гусенице. В тыльной части капли жидкость отрывается от поверхностней перетекает в лобовую часть. В этом процессе любой участок жидкости, контактирующий с поверхностью, со временем оказывается перед необходимостью оторваться от нее. Сила, которая для этого необходима, и является аналогом силы трения, действующей, когда твердый кубик скользит по твердой поверхности.

Чтобы понять, что же происходит на оконном стекле во время дождя, надо определить две конкурирующие силы: проекцию силы тяжести (F1) и силу, необходимую для от­рыва жидкости от твердой поверхности (F2) в области тыль­ной части движущейся капли.

Сила F1зависящая от угла наклона плоскости по отноше­нию к горизонту φ, равна F1= mgsin φ (т — масса капли). Происхождение силы F2 связано с тем, что жидкость и твердое тело, на поверхности которого она находится, притягиваются друг к другу силами молекулярного взаимо­действия. Это взаимодействие количественно можно оха­рактеризовать той энергией, которую необходимо затра­тить, чтобы отделить жидкость от твердой поверхности по площади контакта 1 см2. До отрыва энергия, связанная с границей жидкость — твердое, равнялась αжт. После отрыва жидкости от твердого тела образуются две поверх­ности; одна из них — свободная поверхность жидкости с энергией αж, вторая — свободная поверхность твердого тела с энергией αт. Таким образом, интересующая нас энергия отрыва в расчете на 1 см2 равна Δα = αт + αж —αжт


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Капля"

Книги похожие на "Капля" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Яков Гегузин

Яков Гегузин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Яков Гегузин - Капля"

Отзывы читателей о книге "Капля", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.