Норберт Винер - Кибернетика или управление и связь в животном и машине

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Кибернетика или управление и связь в животном и машине"
Описание и краткое содержание "Кибернетика или управление и связь в животном и машине" читать бесплатно онлайн.
«Кибернетика» — известная книга выдающегося американского математика Норберта Винера (1894—1964), сыгравшая большую роль в развитии современной науки и давшая имя одному из важнейших ее направлений. Настоящее русское издание является полным переводом второго американского издания, вышедшего в 1961 г. и содержащего важные дополнения к первому изданию 1948 г. Читатель также найдет в приложениях переводы некоторых статей и интервью Винера, включая последнее, данное им незадолго до смерти для журнала «Юнайтед Стэйтс Ньюс энд Уорлд Рипорт».
Книга, написанная своеобразным свободным стилем, затрагивает широкий круг проблем современной науки, от сферы наук технических до сферы наук социальных и гуманитарных. В центре — проблематика поведения и воспроизведения (естественного и искусственного) сложных управляющих и информационных систем в технике, живой природе и обществе. Автор глубоко озабочен судьбой науки и ученых в современном мире и резко осуждает использование научного могущества для эксплуатации и войны.
Книга предназначена для научных работников и инженеров.
Здесь я сформулирую без доказательств ряд свойств некоторой действительной функции х(t, α), уже излагавшихся в моей статье по обобщенному гармоническому анализу и в других работах[194]. Действительная функция х(t, α) зависит от переменной t, изменяющейся от —∞ до ∞, и от переменной α, изменяющейся от 0 до 1. Она изображает одну пространственную координату броунова движения, зависящую от времени t и параметра α статистического распределения. Выражение
(10.09)
определяется для всех функций φ(t) класса Лебега L2, [c.280] в интервале от —∞ до +∞. Если φ(t) имеет производную, принадлежащую L2, то выражение (10.09) понимается как
(10.10)
и затем определяется для всех функций φ(t) из L2 некоторым вполне определенным предельным процессом. Другие интегралы
(10.11)
вводятся аналогичным образом.
Основная теорема, используемая нами, утверждает, что
(10.12)
можно найти, положив
, (10.13)
где переменные τk образуются всеми возможными способами путем отождествления всех пар переменных σk, друг с другом (если n четно)[195], и образовав
(10.14)
Если n нечетно, то
(10.15)
Другая важная теорема, касающаяся этих стохастических интегралов, гласит: пусть F{g} — функционал [c.281] от g(t), такой, что F[x(t, α)] есть функция, принадлежащая к L по α и зависящая только от разностей x(t2, α)—х(t1, α); тогда для любого t1 и почти всех α
(10.16)
Это эргодическая теорема Биркгоффа, доказанная некогда автором[196] и другими.
В упомянутой статье из «Acta Mathematica» установлено, что если U — действительное унитарное преобразование функции K(t), то
, (10.17)
где β отличается от α только сохраняющим меру преобразованием интервала (0, 1) в себя.
Пусть теперь К(t) принадлежит к L2, и пусть
(10.18)
в смысле Планшереля[197]. Рассмотрим действительную функцию
, (10.19)
изображающую отклик линейного преобразователя на броунов вход. Она будет иметь автокорреляцию
, (10.20)
[c.282]
которая, в силу эргодической теоремы, почти для всех значений α будет равна
(10.21)
Тогда спектр почти всегда будет равен
(10.22)
Но это истинный спектр. Выборочная автокорреляция за время усреднения А (в нашем случае 2700 сек) будет равна
(10.23)
В результате выборочный спектр почти всегда будет иметь временно́е среднее
(10.24)
Следовательно, выборочный спектр и истинный спектр будут иметь одно и то же среднее значение по времени.
Для многих целей нам интересен приближенный спектр, в котором интегрирование по т производится только по интервалу (0, В), где В в описанном выше частном случае равно 20 сек. Напомним, что f(t) — действительная функция, а автокорреляция — симметрическая [c.283] функция. Поэтому интеграл от 0 до В можно заменить интегралом от —В до В:
(10.25)
Эта величина будет иметь среднее значение
(10.26)
Квадрат приближенного спектра в интервале (—В, В) будет равен
а эта величина будет иметь среднее значение
[c.284]
. (10.27)
Как известно, если m обозначает среднее, то
(10.28)
Таким образом, среднеквадратическая ошибка приближенного выборочного спектра будет равна
(10.29)
Но
(10.30)
Следовательно, интеграл
(10.31)
равен величине 1/А, умноженной на текущее взвешенное среднее от g(ω). Если усредняемая величина приблизительно постоянна в малом интервале 1/А, как [c.285] можно здесь разумно предположить, мы получим как приближенную главную часть среднеквадратической ошибки в любой точке спектра выражение
(10.32)
Заметим, что если приближенный выборочный спектр имеет максимум при u=10, то величина этого максимума
(10.33)
Эта величина при гладкой функции q(ω) мало будет отличаться от │q(10)│2. Среднеквадратическая ошибка спектра, отнесенная к этой величине как единице измерения, будет равна
(10.34)
и, следовательно, не превосходит
(10.35)
В рассматриваемом случае она равна
(10.36)
Если допускать реальность явления провала, или, по крайней мере, реальность крутого падения нашей кривой на частоте около 9,05 гц, то будет уместно поставить по этому поводу несколько физиологических вопросов. Три главных касаются физиологической функции наблюденных нами явлений, физиологического механизма, производящего их, и применения, которое они могли бы найти в медицине.
Заметим, что резкая линия частоты эквивалентна точным часам. Так как мозг есть в некотором смысле управляющее и вычислительное устройство, естественно спросить, находят ли часы применение в других формах управляющих и вычислительных устройств. И действительно, многие из них содержат часы. Часы применяются [c.286] в таких устройствах в целях стробирования[198]. Все такие устройства должны комбинировать большое число импульсов в один импульс. Если импульсы передаются простым включением или выключением цепи, их синхронность не имеет большого значения и стробирование не нужно. Однако при подобном способе передачи импульсов вся цепь оказывается занятой вплоть до смены сообщения и значительная часть аппаратуры выводится из действия на неопределенное время. Поэтому желательно, чтобы в вычислительном или управляющем устройстве сообщения передавались комбинированным сигналом включения-выключения. Тогда аппаратура будет сразу же свободна для дальнейшего использования. Достичь этого можно, если сообщения будут запоминаться, чтобы их всех можно было послать одновременно, и затем быстро комбинироваться, пока они еще в машине. Здесь необходимо стробирование, а стробирование удобно осуществлять при помощи часов.
Хорошо известно, что, по крайней мере в длинных нервных волокнах, нервные импульсы переносятся пиками, форма которых не зависит от способа их возникновения. Комбинирование этих пиков — функция синаптического механизма. В этих синапсах несколько входящих волокон соединяются с выходящим волокном. Если надлежащая комбинация входящих волокон возбуждается в течение некоторого весьма короткого промежутка времени, то возбуждается и выходящее волокно. В такой комбинации действие входящих волокон в некоторых случаях аддитивно: если возбуждается больше известного числа волокон, достигается порог, вызывающий возбуждение выходящего волокна. В других случаях некоторые из входящих волокон производят тормозящее действие, совершенно не допускающее возбуждения или, во всяком случае, увеличивающее порог для других волокон. В обоих случаях существен короткий период комбинирования, и если приходящие сообщения не попадают в этот короткий период, они не комбинируются. Поэтому необходим какой-то стробирующий механизм, позволяющий сообщениям прибывать [c.287] почти одновременно. В противном случае синапс не может действовать как комбинирующий механизм[199].
Желательно, однако, найти дальнейшее подтверждение тому, что стробирование действительно имеет место. Здесь уместно упомянуть работу проф. Дональда Б. Линдсли с психологического факультета Калифорнийского университета в Лос-Анджелесе. Он исследовал время реакции при зрительных сигналах. Как хорошо известно, когда приходит зрительный сигнал, возбуждаемые им мышцы действуют не сразу, а с запаздыванием. Линдсли показал, что эта задержка непостоянна и, судя по всему, состоит из трех частей. Одна из них имеет постоянную длительность, тогда как две другие, по-видимому, равномерно распределены в интервале около 1/10 сек. Представляется, что центральная нервная система может воспринимать приходящие импульсы только каждую 1/10 сек и что импульсы от центральной нервной системы могут приходить к мышцам только каждую 1/10 сек. Это является экспериментальным доказательством стробирования, и весьма вероятно, что связь стробирования с одной десятой секунды, составляющей приблизительный период альфа-ритма мозга, не случайна.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Кибернетика или управление и связь в животном и машине"
Книги похожие на "Кибернетика или управление и связь в животном и машине" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Норберт Винер - Кибернетика или управление и связь в животном и машине"
Отзывы читателей о книге "Кибернетика или управление и связь в животном и машине", комментарии и мнения людей о произведении.