» » » » Норберт Винер - Кибернетика или управление и связь в животном и машине


Авторские права

Норберт Винер - Кибернетика или управление и связь в животном и машине

Здесь можно скачать бесплатно "Норберт Винер - Кибернетика или управление и связь в животном и машине" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Норберт Винер - Кибернетика или управление и связь в животном и машине
Рейтинг:
Название:
Кибернетика или управление и связь в животном и машине
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Кибернетика или управление и связь в животном и машине"

Описание и краткое содержание "Кибернетика или управление и связь в животном и машине" читать бесплатно онлайн.



«Кибернетика» — известная книга выдающегося американского математика Норберта Винера (1894—1964), сыгравшая большую роль в развитии современной науки и давшая имя одному из важнейших ее направлений. Настоящее русское издание является полным переводом второго американского издания, вышедшего в 1961 г. и содержащего важные дополнения к первому изданию 1948 г. Читатель также найдет в приложениях переводы некоторых статей и интервью Винера, включая последнее, данное им незадолго до смерти для журнала «Юнайтед Стэйтс Ньюс энд Уорлд Рипорт».

Книга, написанная своеобразным свободным стилем, затрагивает широкий круг проблем современной науки, от сферы наук технических до сферы наук социальных и гуманитарных. В центре — проблематика поведения и воспроизведения (естественного и искусственного) сложных управляющих и информационных систем в технике, живой природе и обществе. Автор глубоко озабочен судьбой науки и ученых в современном мире и резко осуждает использование научного могущества для эксплуатации и войны.

Книга предназначена для научных работников и инженеров.






Надо признать, что последующее развитие электроэнцефалографии не оправдало розовых надежд, которые питали первые исследователи в этой области. Полученные ими данные записывались чернильным самописцем. Это чрезвычайно сложные и неправильные кривые; и хотя можно было различить некоторые преобладающие частоты, как, например, альфа-ритм с частотой около 10 колебаний в секунду, записи чернилами были мало пригодны для дальнейшей математической обработки. В результате электроэнцефалография стала больше искусством, чем наукой, и зависела от способности тренированного наблюдателя распознавать определенные свойства чернильной кривой на основании большого опыта. Это вызывало весьма серьезный упрек, что истолкование электроэнцефалограмм делается в значительной мере субъективным.

В конце 20-х — начале 30-х годов я заинтересовался гармоническим анализом непрерывных процессов. Хотя физики ранее уже рассматривали такие процессы, математическая теория гармонического анализа почти вся ограничивалась изучением либо периодических процессов, либо процессов, стремящихся в некотором смысле к нулю с возрастанием времени в положительном или отрицательном направлении. Моя работа была первой попыткой поставить гармонический анализ непрерывных процессов на твердую математическую основу. При этом я нашел, что главным здесь является понятие автокорреляции, которое уже применял Дж. И. Тэйлор (ныне сэр Джеффри Тэйлор) при изучении турбулентностей[189]. [c.270]

Автокорреляция для функции времени f(t) представляет собой временно́е среднее от произведения f(t+τ) на f(t). Удобно вести комплексные функции времени, если даже в реальных случаях мы рассматриваем действительные функции. Тогда автокорреляция становится равной среднему произведению f(t+τ) на величину, сопряженную с f(t). Работаем ли мы с действительными или с комплексными функциями, спектр мощности функции f(t) равен преобразованию Фурье от ее автокорреляции.

Я уже говорил о непригодности чернильных записей для дальнейшей математической обработки. Прежде чем ожидать многого от идеи автокорреляции, необходимо было заменить чернильные записи какими-либо другими, более пригодными.

Одним из лучших способов фиксации малых флюктуирующих напряжений для дальнейшей обработки — применение магнитной ленты. Она позволяет сохранять флюктуирующее электрическое напряжение в виде постоянной записи, которую можно затем использовать когда угодно. Один из таких приборов был придуман около десяти лет тому назад в научно-исследовательской лаборатории электроники Массачусетсского технологического института под руководством проф. Уолтера А. Розенблита и д-ра Мэри А. Б. Бразье[190].

В этом приборе применяется запись на магнитную ленту с частотной модуляцией. Дело в том, что считывание всегда связано с некоторым стиранием магнитной ленты. При записи с амплитудной модуляцией стирание приводит к изменению хранимого сообщения, и при последовательных считываниях ленты мы по существу имеем дело с меняющимся сообщением.

При частотной модуляции также происходит некоторое стирание, но приборы, посредством которых мы читаем ленту, сравнительно нечувствительны к амплитуде и считывают только частоту. Пока лента не сотрется настолько, что станет совершенно неразборчива, частичное стирание ленты не искажает значительно сообщения, которое она хранит. Поэтому ленту можно [c.271] читать много раз почти с такой же точностью, как и при первом считывании.

Как следует из самого понятия автокорреляции, нам понадобится механизм, задерживающий считывание ленты на регулируемый интервал времени. Если отрывок записи длительности А пропустить через прибор с двумя последовательными считывающими головками, то образуются два одинаковых, но сдвинутых во времени сигнала. Временной сдвиг зависит от расстояния между считывающими головками и от скорости подачи ленты, и его можно менять по нашему желанию. Мы можем обозначить один сигнал через f(t), а другой — через f(t+τ), где τ — временной сдвиг. Произведение этих сигналов можно, например, получить при помощи квадратических детекторов и линейных смесителей, используя тождество

4ab = (a+b)2—(ab)2          (10.01)

Это произведение можно приближенно усреднить на интегрирующей реостатно-емкостной цепи, имеющей большую постоянную времени сравнительно с длительностью А нашей выборки. Полученное среднее [c.272] пропорционально значение автокорреляционной функции при задержке τ. Повторение процесса при различных τ даст некоторый ряд значений автокорреляции (или, вернее, выборочной автокорреляции за большое время включения А). На рис. 9 показан график одной реальной автокорреляции такого рода[191]. Заметим, что здесь показана лишь половина кривой, так как автокорреляция для отрицательных времен совпадает с автокорреляцией для положительных времен, по крайней мере, в случае, когда мы отыскиваем автокорреляцию действительной кривой.

 

Рис. 9. Автокорреляция

Заметим, что подобные автокорреляционные кривые применялись уже много лет в оптике и что прибором, с помощью которого их получали, был интерферометр Майкельсона (рис. 10). Интерферометр Майкельсона посредством системы зеркал и линз разделяет световой луч на две части, которые посылаются по путям разной длины и затем вновь соединяются в один луч. Различные длины путей вызывают различные задержки во [c.273] времени, и результирующий луч будет равен сумме двух отражений входящего луча, которые можно опять обозначить через f(t) и f(t+τ). Если измерить чувствительным фотометром силу луча, то его показание будет пропорционально квадрату суммы f(t)+ f(t+τ) и, следовательно, должно содержать член, пропорциональный автокорреляции. Другими словами, яркость интерференционных полос даст нам автокорреляцию (с точностью до линейного преобразования).

 

Рис. 10. Интерферометр Майкельсона

Все это неявно содержалось в работе Майкельсона. Нетрудно видеть, что при выполнении преобразования Фурье над интерференционными полосами интерферометр дает нам энергетический спектр света и тем самым по существу является спектрометром. Более того, это самый точный из известных нам типов спектрометров.

Спектрометр такого типа получил должное признание лишь в последние годы. Мне говорили, что теперь он принят в качестве важного средства прецизионных измерений. Отсюда видно, что методы обработки автокорреляционных записей, которые я сейчас изложу, применимы также в спектроскопии и позволяют довести до предела ту информацию, которую может дать спектрометр.

Рассмотрим, как получить спектр мозговой электрической волны по автокорреляции. Пусть C(t) — автокорреляция функции f(t). Тогда C(t) можно записать в виде

           (10.02)

Здесь F всегда является возрастающей или по меньшей мере неубывающей функцией от ω; мы будем называть ее интегральным спектром функции f. Вообще говоря, этот интегральный спектр состоит из трех аддитивных частей. Линейчатая часть спектра возрастает лишь на счетном множестве точек. После ее исключения останется непрерывный спектр, равный, в свою очередь, сумме двух частей: одна из них возрастает только на множестве меры нуль, а другая абсолютно непрерывна и является интегралом положительной интегрируемой функции.

Будем впредь полагать, что первые две части спектра: дискретная часть и непрерывная часть, возрастающая [c.274] на множестве меры нуль, — отсутствуют. В этом случае можно написать

           (10.03)

где φ (ω) — спектральная плотность. Если φ (ω) принадлежит к классу Лебега L2, то можно написать

           (10.04)

Как видно по автокорреляционной кривой мозговых волн, преобладающая часть мощности спектра сосредоточена в окрестности частоты 10 гц. В таком случае φ (ω) будет иметь форму, подобную следующей диаграмме:

 

Два пика около 10 и —10 суть зеркальные изображения друг друга.

Известны различные способы численного выполнения разложения Фурье, включая применение интегрирующих приборов и цифровые вычислительные процессы. В обоих случаях неудобством является то, что главные пики расположены около 10 и —10, а не около 0. Но существуют способы переноса гармонического анализа в окрестность нулевой частоты, которые весьма сокращают объем работы. Заметим, что


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Кибернетика или управление и связь в животном и машине"

Книги похожие на "Кибернетика или управление и связь в животном и машине" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Норберт Винер

Норберт Винер - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Норберт Винер - Кибернетика или управление и связь в животном и машине"

Отзывы читателей о книге "Кибернетика или управление и связь в животном и машине", комментарии и мнения людей о произведении.

  1. Пока хочу получше познакомиться с самим Норбертом Винером и его последними трудами.
А что Вы думаете о книге? Оставьте Ваш отзыв.