Александр Лурия - Романтические эссе

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Романтические эссе"
Описание и краткое содержание "Романтические эссе" читать бесплатно онлайн.
Данное издание содержит две книги известнейшего психолога XX в. Александра Романовича Лурия (1902–1977): «Маленькая книжка о большой памяти» и «Потерянный и возвращенный мир».
Это трагические истории, реальные рассказы о том, что значит жить с психикой, которая, регистрируя мельчайшие подробности жизни, порой не способна осмыслить происходящее.
Оба героя книги — и обладатель феноменальной памяти, и человек, оказавшийся из-за тяжелого ранения в беспамятном мире, — платят за свою уникальность, пытаясь найти свое место среди людей.
Для широкого круга читателей.
Пусть многие из этих предложений не слишком практичны: где найдешь столько автомобильных камер, чтобы разрезать их на резиновые кольца и внести новый метод упаковки?.. Ш. никогда не отличался практичностью (и мы еще увидим — почему), но «то, что другие решают с расчетами и на бумаге, он решал умозрительно» — ив этом было его большое преимущество. Оно особенно проявлялось в тех задачах, которые трудны для нас именно потому, что словесный «расчет» заслоняет от нас наглядное «видение».
«Вы помните шуточную задачу: «Стояли на полке два тома по 400 страниц. Книжный червь прогрыз книги от 1-й страницы первого тома до последней страницы второго. Сколько страниц он прогрыз?»
«Вы, наверное, скажете 800–400 страниц первого и 400 страниц второго? А я сразу вижу: нет, он прогрыз только два переплета! Ведь я вижу: вот они стоят, два тома, слева первый, рядом второй. Вот червь начинает с первой страницы и идет направо. Там только переплет первого тома и переплет второго, и вот он уже у последней страницы второго тома… а ведь он ничего, кроме двух переплетов, не прогрыз…»
Еще ярче выступают механизмы наглядного мышления при решении тех задач, в которых исходные отвлеченные понятия вступают в особенно отчетливый конфликт со зрительными представлениями; Ш. свободен от этого конфликта — и то, что с трудом представляется нами, легко усматривается им.
«…Вот там, на М. Бронной, у нас там была маленькая комната, мы встретились с математиком Г. Он мне рассказывал, как он решает задачи, и предложил мне решить такую — он сидел на стуле, а я стоял. «Представьте себе, — говорил он, — что перед вами лежит яблоко, и это яблоко надо обтянуть веревкой или ремешком; получится круг с определенной длиной окружности. Теперь я к этой длине окружности прибавлю 1 метр, и теперь эта новая длина окружности будет яблоко плюс 1 метр. Охватите снова яблоко; ясно, что между яблоком и веревкой останется больше пространства». Когда он мне говорил это, я тут же вижу яблоко, я наклоняюсь, обтягиваю его веревкой… Он говорит «ремнем» — и я тут же вижу ремень. Когда он заговорил о метре — я вижу кусок ремня, нет, он целый, и вот я сделал из него круг, а в середине положил яблоко. Теперь он говорит: «Представим себе земной шар». Вначале я увидел большой земной шар, его тоже охватывает ремень — и горы, и возвышенности… «Теперь также прибавим к ремню 1 метр. Должно получиться какое-то расстояние. Какое расстояние получится?» Вначале у меня появляется представление об огромном земном шаре. Я его охватил — нет, это слишком близко… Я его удаляю… Я его превращаю в глобус, но без подставки… Это тоже не годится. Он сходен с яблоком. Тогда помещение, где мы были, пропало, и я увидел огромный шар далеко — в нескольких километрах. Ремень я заменяю стальным обручем — задача трудная — охватить его надо точно. Потом я прибавляю метр и вижу, как отскакивает пространство. Какое пространство? Мне нужно сообразить, понять, чтобы превратить его в размеры, которые приняты у людей… Я у дверей вижу ящик, я превращаю его в форму шара, ящик обтягиваю ремнем… Теперь я прибавляю метр точно по углам… Затем я беру точный размер, разрезаю его на 4 части, каждая часть 25 см — для каждого ремешка получается излишек — длина каждой стороны ящика и 1/4 часть… Ну вот, безразлично, какой бы величины ящик ни был, если каждая сторона 100 км, я прибавляю 25 см… Какая ни будет длина каждой стороны ящика — все равно прибавится 25 см… Получается 4 стороны — и каждая сторона имеет прибавку в 25 см… Я отодвигаю ремень вдоль стороны — и получается с каждой стороны по 12,5 см, ремень везде отстает от ящика на 12,5 см. Пусть ящик огромный, каждая сторона имеет миллион см — все равно, если прибавить 1 метр — каждая сторона имеет 25 см… Теперь ящик превращается в нормальный. Мне нужно только снять углы и превратить его в круглую форму. И получилось опять то же самое… Вот как я решал эту задачу» (опыт 12/III 1937 г.).
Читатель простит автора за слишком длинную выдержку; у автора есть одно оправдание: выдержка показывает, какие умозрительные методы применяет Ш. и как эти методы приводят его к решению задачи совсем иными путями, чем те, которые применяет человек, оперирующий «расчетами и карандашом».
Мы провели с Ш. много часов над анализом того, какие преимущества давал умозрительный метод для решения арифметических задач, — и мой испытуемый многому научил меня, анализируя ту роль, которую для решения задач играют наглядные образы.
Нет сомнения, «расчеты с карандашом и бумагой» или с умственными схемами не могут не оставаться основным приемом решения задач, но как часто встречаются задачи, в которых эти расчеты, не опирающиеся на наглядные образы, могут уводить в сторону от правильного решения или заменять простой способ решения сложным и неэкономным.
Кто не знает, какой трудной может оказаться, казалось бы, простая задача: «Кирпич весит 1 кг и еще столько, сколько весит полкирпича. Сколько весит кирпич?»… С какой легкостью люди, сосредоточившиеся только на числах, дают неверный ответ — 1,5 кг! Такие соскальзывания на формальные ответы чужды Ш., нет, даже просто невозможны для него. Его умозрительная форма решения, которая заставляла его всегда иметь дело с предметами и всегда связывать числа с наглядными вещами, не допускала формальных решений, и задачи, вызывавшие состояние конфликта у других, протекали у него без вызванных таким конфликтом затруднений.
Вот только несколько иллюстраций этого положения.
«…Мне предлагают задачу: «Книга в переплете стоит 1 руб. 50 коп. Книга дороже переплета на 1 руб. Сколько стоит книга и сколько переплет?» Я решил это совсем просто. У меня лежит книга в красном переплете, книга стоит дороже переплета на 1 руб. Я вырываю часть книги и думаю, что она стоит 1 руб. Остается часть книги, которая равна стоимости переплета — 50 коп. Потом я присоединяю эту часть книги — получается 1 руб. 25 коп.
И еще: мой товарищ, инженер, дал мне задачу: «Отцу и сыну вместе 47 лет; сколько лет им было 3 года назад?» Я вижу отца, он держит за руку сына, им 47 лет. С ними идет еще один сын и еще один отец. Я откидываю каждому по 3 года… Я представляю себе, что это нужно взять вдвойне. Я умножаю на 2, получается 6, и я вычитаю 6» (опыт 12/III 1937 г.).
Наглядные образы вещей уводят от ошибок формального решения задачи, и у Ш. не появляется искушение заменить подлинное решение задачи операцией формального числового подсчета.
Сделаем еще один шаг и посмотрим, как умозрительно решаются задачи, которые мы обычно решаем сложным отсчетом.
Задача: «Блокнот в 4 раза дороже карандаша. Карандаш дешевле блокнота на 30 коп. Сколько стоят блокнот и карандаш в отдельности?»
Ш. решает эту задачу. На столе появляется блокнот, рядом с ним 4 карандаша (рис. 1, я).
Рис. 1
«Карандаш дешевле блокнота на 30 коп. Три карандаша отодвигаются вправо (рис. 1, б) как лишние и уступают место их денежному эквиваленту. Вслед за этими образами появляется изображение двух чисел: 10 и 40… Вот и ответ на вопрос, сколько стоят блокнот и карандаш в отдельности» (из записей Ш.).
Нетрудно видеть, как быстро и легко выполняется умозрительное решение задачи там, где решение ее вербально-логическим путем должно вызывать дополнительные отвлеченные расчеты.
Еще отчетливее выступают приемы умозрительного решения задач в более сложных примерах. Остановимся на двух из них.
Ш. дается задача: «Мудрец и путешественник сидели на лужайке. У путешественника было 2 хлебца, у мудреца — 3. К ним подошел прохожий, они предложили ему покушать и поделили поровну хлеб на 3 части. После еды прохожий, поблагодарив за угощение, дал им 10 яиц. Как мудрец и путешественник поделили между собой полученные 10 яиц?»
Рис. 2
Рис. 3
«…У меня возникают образы: двое (А и В) сидят на лужайке. К ним присоединяется прохожий (С). Вся группа располагается треугольником. Между ними появляются хлебцы. Люди исчезают и заменяются буквами А, В, С, а неправильной формы хлебцы — продолговатыми дощечками. Дощечки, принадлежавшие А, — серого цвета, принадлежавшие В — белого (рис. 2, а). Двумя горизонтальными линиями разрезаю дощечки на три равные группы кубиков. Получается следующая картина (рис. 2, б).
За 5 съеденных кубиков С дал 10 яиц. У А — 6 кубиков, из которых он сам съел первый вертикальный ряд и 2 кубика из второго ряда. В — со своей стороны — с такой же конфигурацией съел столько же. Рис. 3 явно показывает количество кубиков, доставшихся С от А и от В.
Может быть еще и другое — логическое решение. Для удобства расчета заменяю слово «яйца» словом «рубли».
Часть хлеба, съеденная прохожим, оценена в 10 рублей. Все трое съели поровну, следовательно, все количество хлеба, съеденного всей группой, стоит 30 рублей (10 x 3 = 30), а один хлебец стоит 6 рублей (30: 5 = 6). Два хлебца, принадлежавшие путешественнику, стоят 12 рублей 2 x 6 = 12). Путешественник сам съел количество хлеба стоимостью 10 рублей, значит, прохожему он смог выделить хлеба лишь на 2 рубля (12–10 = 2). У мудреца было 3 хлебца, стоимость которых 18 рублей, из них он выдал прохожему хлеба на 8 рублей. Образное решение протекает быстро, почти непроизвольно. Абстрактно-вербальный способ решения, наоборот, нуждается в строгом анализе, последовательных суждениях и некоторой интуиции. Результат получается одинаковый…» (из записей Ш.).
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Романтические эссе"
Книги похожие на "Романтические эссе" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Александр Лурия - Романтические эссе"
Отзывы читателей о книге "Романтические эссе", комментарии и мнения людей о произведении.