Леонид Пономарев - По ту сторону кванта

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "По ту сторону кванта"
Описание и краткое содержание "По ту сторону кванта" читать бесплатно онлайн.
Бытует упорное мнение, что в науке есть факты, которые начинающим с нею знакомиться знать рано, а сообщать искушенным в ней — стыдно. Чаще всего об этом вспоминают, когда пытаются объяснить строение атома. Быть может, поэтому до сих пор не написана книга о квантовой механике достаточно строгая, чтобы не обидеть знатока, достаточно простая, чтобы не отпугнуть новичка, и вместе с тем интересная им обоим.
Эта книга не для знатоков, хотя и они найдут здесь несколько неожиданных фактов. Она для тех, кто заканчивает школу, и для тех, кто пытается посмотреть на мир немного шире, чем позволяет им их специальность — необходимо узкая, чтобы быть продуктивной.
В предлагаемой книге история атома рассказана вполне строго. Но строгость в ней не самоцель: как правило, нам интересны не только сами факты, но и их толкование и обстоятельства, при которых они открыты. Поэтому главное в книге — эволюция идей и понятий атомной физики, образующих единую систему — простую и гармоничную. Именно эта внутренняя красота была побудительной причиной появления книги. Я буду считать свою работу не напрасной, если прочитавший ее почувствует силу логических построений квантовой механики и красоту их неожиданно простых следствий.
Однако если на пути «α-частиц поставить металлическую фольгу, то вместо резкого изображения щели на, экране возникает размытая полоса. Эта полоса лишь немного шире изображения щели, полученного в первом случае: α-частицы отклонялись от прямого пути в среднем всего на 2 градуса. Однако несложный расчет показал: чтобы объяснить даже такие небольшие отклонения, нужно допустить, что в атомах фольги могут возникать огромные электрические поля напряженностью свыше 200 тыс. в/см.
Фольга на пути потока частицВ положительном шаре атома Томсона таких напряженностей быть не может. Столкновения с электронами также не в счет: ведь по сравнению с ними «α-частица, летящая со скоростью 20 км/сек, все равно что пушечное ядро рядом с горошиной. И все же пути «α-частиц искривлялись. В поисках разгадки Марсден предложил проверить: а не могут ли «α-частицы отражаться от фольги назад? С точки зрения модели Томсона, предложение совершенно бессмысленное: пушечное ядро не может отразиться от горошины. Результат был неожиданным, но вполне убедительным, хотя поверить в него было трудно: «α-частицы отражались от фольги.
Прошло два года. За это время Гейгер и Марсден сосчитали более миллиона сцинтилляций и доказали, что отражается назад примерно одна «α-частица из 8 тысяч.
Только теперь, 7 марта 1911 года, Манчестерское философское общество. — то самое, президентом которого был когда-то Джон Дальтон, — услышало доклад Резерфорда «Рассеяние α- и β-лучей и строение атома». В тот день слушатели узнали, что атом подобен солнечной системе: он состоит из ядра и электронов, которые вращаются вокруг него на расстояниях ≈ 10-8 см. Размеры ядра очень малы — всего 10-13—10-12 см, но в нем заключена практически вся масса атома. Заряд ядра положителен и по величине равен примерно половине атомного веса элемента. Сравнение с солнечной системой не случайно: диаметр солнца (1,4 106 км) примерно во столько же раз меньше размеров солнечной системы (6 • 109 км), во сколько диаметры ядер (≈ 10-12 см), меньше размеров атома (≈ 10-8 см).
Мы настолько привыкли к новым понятиям, что, объясняя электронику, ссылаемся на телевизор, а рассказывая о механике, приводим в пример паровоз. Поэтому сейчас нам трудно понять тогдашнее недоумение людей, по силе ума подобных Резерфорду. Действительно, для нас сейчас все так прозрачно: просто «α-частица отражается от ядер атомов. И к этой картине мы привыкаем с детства. Но чтобы нарисовать ее в первый раз, необходима была выдающаяся научная смелость, основанная на знании, добытом большим трудом. Прежде чем эта картина стала известна каждому, пришлось не только сосчитать свыше миллиона сцинтилляций: нужно было (как вспоминал в конце жизни Гейгер) «…преодолеть такие трудности, смысл которых мы сейчас даже понять не в состоянии»; нужно было сначала в течение десяти (!) лет доказывать, что «α-частицы — не что иное, как атомы гелия, потерявшие два электрона, Доказательство оказалось непростым, и Шведская академия наук хорошо понимала это, когда в 1908 году присудила Резерфорду Нобелевскую премию за исследования по химии радиоактивных веществ, в результате распада которых образуются α-частицы. Обо всем этом постепенно забыли: результат был важнее и проще, чем путь, к нему приведший.
Исследование РезерфордаСообщение Резерфорда физики приняли сдержанно. Сам он в течение двух лет также не очень сильно настаивал на своей модели, хотя и верил в безошибочность опытов, которые к ней привели. Причина была все та же: если верить электродинамике, такая система существовать не может, поскольку по ее законам вращающийся электрон неизбежно и очень быстро упадет на ядро. Приходилось выбирать: либо электродинамика, либо планетарный атом. Физики молча выбрали первое. Молча потому, что опыты Резерфорда нельзя было ни забыть, ни опровергнуть. Физика атома зашла в тупик. И чтобы выйти из него, нужен был Нильс Бор.
ЛУЧИ
Независимо от гипотез о строении атома ученые рано поняли, что знания о нем можно получить, изучая его линейчатый спектр (так музыкант по тону струны определяет ее длину, а по аккорду узнает инструмент). В физике всякое изучение в конечном итоге сводится к измерению. Поэтому прежде всего необходимо было научиться измерять длины волн как можно точнее, то есть еще пристальнее, чем Фраунгофер, исследовать структуру линейчатого спектра.
На призменном спектрографе Кирхгофа и Бунзена этого сделать уже было нельзя. Стеклянную призму в нем сменила дифракционная решетка, которую значительно усовершенствовал Генри Роулэнд (1848–1901) — представитель тогда еще молодой американской науки. С помощью этого прибора в течение нескольких десятилетий трудами Карла Рунге (1856–1927), Фридриха Кайзера (1853–1940) и особенно лаборатории Фридриха Пашена (1865–1947) в Тюбингене были точно измерены десятки тысяч спектральных линий различных элементов и аккуратно записаны в длинные таблицы. (К 1913 году общее число работ по спектральному анализу перевалило за 50 тыс. В частности, оказалось, что знаменитая желтая линия D в спектре натрия. состоит из двух очень близко расположенных линий: D1 = 5895,9236 Ǻ и D2 = 5889,9504 Ǻ. (1 Ǻ = 10-8 см, то есть примерно равен размеру атома.)
Но высшая задача любой науки не в том, чтобы накоплять факты, а в том, чтобы установить связи между явлениями и найти их причину. Всем было ясно, что в этих длинных таблицах заключена огромная информация о структуре атома. Но как ее оттуда извлечь? (Вероятно, такие же чувства испытывали египтологи до Шампольона, глядя на иероглифы.)
Первый шаг всегда труден и незаметен. Поэтому об Иоганне Якобе Бальмере (1825–1898), который впервые обнаружил какую-то систему в этом хаосе чисел, мы знаем очень мало. Известно, что родился он 1 мая 1825 года в маленьком городке Лаузене Базельского кантона, там же окончил среднюю школу, а затем изучал математику в университетах Карлсруэ, Берлина и Базеля. В 1869 году он стал доктором философии и приват-доцентом Базельского университета, но вскоре оставил профессорское кресло и предпочел преподавать физику в женской гимназии. Бальмеру было уже 60 лет, когда он вдруг заметил, что четыре спектральные линии в видимой части спектра водорода расположены не беспорядочно, а образуют серию, которую можно описать единой формулой:
λ = b k2/(k2-n2), где: n = 2; k = 3, 4, 5, 6; b = 3645,6 Ǻ.
Это простое соотношение заслуживает всяческого внимания. Дело в том, что оно точное, в чем каждый желающий может легко убедиться сам.
Взгляните на табличку, которую составил в 1885 году Бальмер:
В первом столбце выписаны длины волн упомянутых четырех спектральных линий, вычисленные по формуле Бальмера; во втором — длины волн, которые незадолго перед этим тщательно измерил шведский физик Ионас Андерс Ангстрем (1814–1874). Совпадение измеренных и вычисленных значений поразительное. Такие совпадения не могут быть случайными, и потому открытие Бальмера не затерялось в архивах, а привело к целой цепи новых исследований.
Иногда Бальмера изображают чудаковатым школьным учителем, который от нечего делать делил и умножал различные числа, пока случайно не набрел на простые связи между ними. Это неверно. Он был глубоко образованным человеком, писал статьи по разным вопросам проективной геометрии и постоянно возвращался к самым сложным проблемам теории познания. Например, в 1868 году он опубликовал работу, в которой пытался выяснить соотношение между научными исследованиями и системами мировой философии. Сам он с детских лет находился под влиянием пифагорейцев с их учением о гармонии и мистической роли целых чисел в природе. Как и древние, Бальмер был убежден, что тайну единства всех наблюдаемых явлений следует искать в различных комбинациях целых чисел. Поэтому, когда его внимание привлек набор четко ограниченных спектральных линий, он подошел к этому явлению природы с уже готовой меркой. Его ожидания оправдались: оказалось, что длины волн спектральных линий связаны между собой простыми рациональными соотношениями.
БальмерС открытия Бальмера начинается целая эпоха в науке об атоме. По существу, вся теория атома начинается с его формулы. Тогда еще этого не знали, но, вероятно, почувствовали. Уже в 1886 году Рунге заметил, что формула Бальмера становится прозрачнее, если в нее вместо длины волны λ поставить частоту ν = c/λ,
ν = c/b[(1/n2)- (1/k2)].
А в 1890 году шведский физик Иоганн Роберт Ридберг (1854–1919) предложил записывать формулу в том виде, который она сохранила до сих пор:
ν = cR[(1/n2)- (1/k2)].
Здесь: с — скорость света, n и k — знакомые нам целые числа, а число R = 109677,576 см-1 называется с тех пор «постоянной Ридберга» для атома водорода. Полагая в этой формуле n = 2, можно вычислить всю серию Бальмера, измеренную впоследствии вплоть до k = 31.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "По ту сторону кванта"
Книги похожие на "По ту сторону кванта" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Леонид Пономарев - По ту сторону кванта"
Отзывы читателей о книге "По ту сторону кванта", комментарии и мнения людей о произведении.