Джордж Эллис - Далекое будущее Вселенной Эсхатология в космической перспективе

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Далекое будущее Вселенной Эсхатология в космической перспективе"
Описание и краткое содержание "Далекое будущее Вселенной Эсхатология в космической перспективе" читать бесплатно онлайн.
Настанет ли в процессе развития вселенной такой момент, когда существование человечества подойдет к концу? И как насчет самой вселенной — погибнет ли она когда‑нибудь или будет существовать вечно? Подборка рассуждений на эти темы представлена в сборнике «Вселенная в далеком будущем», вышедшем под редакцией Джорджа Эллиса и состоящем из восемнадцати статей. Различные перспективы, обсуждаемые авторами этой книги, базируются на научных открытиях прошлого и настоящего, проецируемых в будущее. Эти рассуждения стимулируют, бросают вызов, побуждают к дальнейшим размышлениям, однако не дают забывать о том, что, возможно, наши теории не удастся проверить до конца времен.
Просуществует ли вселенная еще сто миллиардов лет? Не претерпит ли катастрофического превращения наше нынешнее пространство, обратившись в иное пространство с иными физическими законами? Можем ли мы построить богословие будущей вселенной? В этой книге ведущие богословы, философы и ученые вместе обсуждают далекое прошлое и далекое будущее вселенной — космические эпохи, масштаб которых несравним с опытом всего человечества. Среди авторов — известнейшие специалисты: Джон Бэрроу, Пол Дэвис, Роберт Рассел, Фримэн Дайсон и другие. Богослов Юрген Мольтман вносит неожиданный, но важный вклад в разработку темы, исследуя мотивы христианской эсхатологии в применении к будущему вселенной.
Это поистине поворотная книга. Изложенные ведущими учеными представления о судьбе нашей вселенной сочетаются здесь с философскими прозрениями известных богословов. Никому прежде не удавалось осуществить подобный синтез. Книга отличается новизной представленных в ней взглядов, оригинальностью и глубиной.
Грегори Бенфорд,
Калифорнийский университет
В качестве аналогии рассмотрим форму снежинок. Общая для них всех шестилучевая симметрия — прямое следствие свойств и формы молекул воды. Но снежинки обнаруживают огромное разнообразие структуры, поскольку каждая из них формируется своей микросредой: каждая снежинка растет в ответ на случайные изменения температуры и влажности, сопровождающие ее рост. Если физики когда‑нибудь создадут фундаментальную теорию, она объяснит нам, какие стороны природы являются прямыми следствиями этой теории (как симметрия снежинок есть следствие базовой структуры молекулы воды), а какие (вроде уникальной структуры каждой конкретной снежинки) — результатами случайностей. Случайные черты могли возникнуть в процессе остывания после Большого взрыва так же, как кусок раскаленного железа магнетизируется, когда остывает, но расположение полюсов при этом может зависеть от случайных факторов.
Космологические числа нашей вселенной, а также, возможно, некоторые из так называемых констант лабораторной физики могут оказаться «случайностями, обусловленными средой», а не зафиксированными единообразно по всей мультивселенной некоей окончательной теорией. Только в этом случае «тонко настроенные» черты нашей вселенной могут объясняться «антропными» аргументами, аналогичными тому, что делает наблюдатель или экспериментатор, отбирая те или иные эффекты в материалах своих измерений: если вселенных много и большинство из них необитаемы, стоит ли удивляться, что мы находимся в одной из обитаемых вселенных?!
Вся история вселенной может быть лишь эпизодом бесконечной мультивселенной; то, что мы называем законами природы (по крайней мере некоторые из них) — лишь местными установлениями нашей космической провинции. Подобные размышления резко расширяют наши представления о реальности. Чтобы поставить их на твердую почву, необходимо дождаться успешной фундаментальной теории, которая сообщит нам, действительно ли много «больших взрывов» вероятнее, чем один, и если так, то как велико разнообразие, которое они могли бы продемонстрировать. Эта теория должна объединить квантовую теорию (управляющую микромиром) с гравитацией, силой, правящей вселенной на макроуровне. Для большинства природных феноменов такое объединение не требуется: квантовая теория важна лишь в микромире атомов, где гравитация слишком слаба, чтобы иметь какое‑нибудь значение; напротив, гравитация важна только на уровне звезд и планет, где онтологическую «размытость», вызванную квантовыми эффектами, можно не принимать во внимание. Однако в самом начале все было сжато так плотно, что квантовые эффекты могли потрясать всю вселенную.
Можно ли надеяться, что такая теория, соединяющая гравитацию с квантовым принципом и изменяющая наши представления о пространстве и времени, появится в ближайшие десятилетия? Сейчас модно ставить на теорию суперструн, или М–теорию, в которой каждая точка нашего пространства является прочно свернутым оригами из шести или даже семи дополнительных измерений. Однако между лабиринтами десяти или одиннадцати измерений и тем, что мы можем пронаблюдать и измерить, по–прежнему зияет устрашающая пропасть. Теория дополнительных измерений пока что не предсказала никаких новых результатов, ни экспериментальных, ни космологических. И все же многие готовы поставить на суперструны едва ли не из чисто эстетических соображений. Как сказал Эдвард Уиттен: «Хорошие неправильные идеи встречаются чрезвычайно редко, а хороших неправильных идей, хотя бы отдаленно способных соперничать с величием теории струн, мир не видел никогда».
6.6. Проверка теорий мультивселенной — здесь и сейчас
Возможно, когда‑нибудь мы обзаведемся убедительной теорией, объясняющей самое начало нашей вселенной, которая расскажет нам, существует ли мультивселенная, и если существует, не являются ли так называемые законы природы лишь местными установлениями нашей космической провинции. Однако, пока мы ждем появления этой теории — а ждать, возможно, придется долго — аналогию с «магазином готового платья» можно уже проверить. Ее можно даже опровергнуть: это случится, если наша вселенная окажется настроенной даже более тонко, чем требует наше присутствие. Приведу два примера подобного стиля рассуждений применительно к двум различным научным вопросам.
Во–первых, Больцманн писал о том, что вся наша вселенная является необыкновенно редкой «флуктуацией» в бесконечном и вечном мире с симметричным временем. Сейчас против этой гипотезы выдвинуто много аргументов, но даже тогда, когда она была только высказана, можно было уже отметить, что в больших объемах флуктуации куда менее вероятны, чем в малых. Поэтому (если бы Больцманн был прав) было бы намного более вероятно, что мы находимся в самой малой из возможных флуктуации, совместимых с нашим существованием, а именно солипсическая вселенная, где существует лишь один мозг, полный воспоминаний, была бы более правдоподобна, чем любая другая интерпретация нашего опыта. Если же мы не готовы сделаться солипсистами, то, вне зависимости от нашего начального отношения к теории Больцманна, ее вероятность будет стремительно падать по мере того, как мы будем осознавать колоссальный масштаб нашего космоса.
Во–вторых, если бы мы даже ничего не знали о формировании звезд и планет, то не удивлялись бы тому, что орбита Земли очень близка к окружности; будь она сильно эксцентричной, вода на земле закипала бы в перигелии и замерзала в афелии — суровые условия, неблагоприятные для нашего появления на свет. Однако некоторая умеренная эксцентричность орбиты, очевидно, совместима с жизнью. Если бы выяснилось, что земля движется вокруг солнца по орбите, гораздо более близкой к идеальной окружности, мы могли бы вывести из этого теорию, постулирующую антропную селекцию орбит, чьи эксцентриситеты имеют «байесовскую априорную вероятность», равномерно распределенную на отрезке 0–1.
Мы можем применить этот стиль рассуждений к важным физическим числам (например, к космологической константе L), чтобы проверить, является ли наша вселенная типичной для подмножества вселенных, в которых могла бы существовать сложная жизнь [15]. Методология требует от нас решить, какие значения совместимы с нашим существованием. Кроме того, требуется особая теория, дающая относительные байесовские априорные вероятности для каждого конкретного значения. Например, в случае L все ли значения равно вероятны? Являются ли небольшие значения более предпочтительными с точки зрения физики? Или существует лишь конечное число возможных дискретных значений? Получив эту информацию, можно будет спросить, «типична» ли наша вселенная для подмножества вселенных, в которых мы могли бы возникнуть. Если даже в этом подмножестве (не говоря уж обо всей мультивселенной) она представляет собой нечто из ряда вон выходящее, то нам придется отказаться от нашей гипотезы.
В качестве другого примера проверки теорий «мультивселенной» рассмотрим предположение Смолина [13] о том, что новые вселенные возникают внутри черных дыр и что физические законы в дочерней вселенной хранят в себе память о законах родительской вселенной, иными словами, что и здесь существует своего рода наследственность. Концепция Смолина пока что не подкреплена какой‑либо развернутой теорией того, каким образом какая‑либо физическая информация (или даже стрела времени) может передаваться из одной вселенной в другую. Однако у нее есть то преимущество, что она делает относительно нашей вселенной предсказание, которое можно проверить.
Если Смолин прав, то вселенные, порождающие много черных дыр, имеют репродуктивное преимущество, которое передается следующим поколениям. Если наша вселенная является результатом такого процесса, то ее способность производить черные дыры должна быть близка к оптимуму в том смысле, что любое незначительное изменение законов и констант физики сделало бы формирование черных дыр менее вероятным. (Лично я считаю, что предсказание Смолина едва ли подтвердится, но он заслуживает нашей благодарности за предоставления примера того, как можно в принципе опровергнуть теорию мультивселенной.)
Эти примеры показывают, что некоторые утверждения о других вселенных могут быть опровергнуты, — необходимое условие валидности научной гипотезы. Мы не можем уверенно утверждать, что «больших взрывов» было много — мы просто слишком мало знаем о самых ранних стадиях развития нашей собственной вселенной. Не знаем мы и того, являются ли фундаментальные законы лишь «разрешающими», этот вопрос предстоит решить физикам двадцать первого столетия. Но если они таковы, то так называемые антропные объяснения станут законными, в сущности, для некоторых важных черт нашей вселенной это будет единственный тип объяснений, которым мы когда‑либо будем располагать.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Далекое будущее Вселенной Эсхатология в космической перспективе"
Книги похожие на "Далекое будущее Вселенной Эсхатология в космической перспективе" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Джордж Эллис - Далекое будущее Вселенной Эсхатология в космической перспективе"
Отзывы читателей о книге "Далекое будущее Вселенной Эсхатология в космической перспективе", комментарии и мнения людей о произведении.