Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."
Описание и краткое содержание "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать бесплатно онлайн.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.
После нескольких десятилетий исследований матриц математики расклассифицировали их на несколько различных типов. Они развили, так сказать, таксономию матриц, в которой полное семейство (N×N)-матриц — называемое математиками общей линейной группой порядка N и обозначаемое как GLN — было разбито на виды и рода.
Выберем всего один из видов в этом большом зверинце — эрмитовы матрицы, названные по имени великого французского математика Шарля Эрмита, с которым мы мельком встречались в главе 10.v. Числа, входящие в эрмитову матрицу, являются комплексными и организованы таким образом, что если число, стоящее в m-й строке и n-м столбце, есть a + bi, то число, стоящее в n-й строке и m-м столбце, есть a − bi. Другими словами, каждый элемент матрицы равен комплексному сопряжению (см. главу 11.v) своего отражения относительно главной диагонали. Попытаюсь прояснить это на примере эрмитовой (4×4)-матрицы:
Как видно, элемент в третьей строке и первом столбце равен комплексному сопряжению элемента в первой строке и третьем столбце. Это эрмитова матрица. Заметим, что из определения следует, что все числа на главной диагонали должны быть вещественными, поскольку определение требует, чтобы каждое число на диагонали было комплексно сопряжено самому себе, а этим свойством обладают только вещественные числа: a + bi = a − bi, если и только если b = 0.
Насчет эрмитовых матриц имеется знаменитая теорема, гласящая, что все собственные значения эрмитовой матрицы вещественны. Если немного подумать, то это выглядит несколько неожиданным. Даже когда все элементы какой-либо матрицы вещественны, ее собственные значения могут оказаться комплексными, как мы видели на примере первой из наших (4×4)-матриц. Если же некоторая матрица с комплексными элементами имеет вещественные собственные значения, то это поистине замечательно. Именно так и происходит, если матрица эрмитова. Собственные значения приведенной выше эрмитовой матрицы (приближенно) равны 4,8573, 12,9535, −16,553, −3,2578. Все они вещественны (и в сумме дают −2, т.е. след матрицы).
Из этой теоремы между прочим следует, что все коэффициенты характеристического многочлена эрмитовой матрицы вещественны. Это получается потому, что собственные значения любой матрицы по определению являются нулями характеристического многочлена. Если нули многочлена — это a, b, с, …, то его можно разложить на множители как (x − а)(x − b)(x − c)…. Если здесь просто раскрыть скобки, то получится многочлен в обычном виде. Но раз все числа a, b, с, … вещественные, то раскрытие скобок приводит к выражению, в котором все коэффициенты — вещественные числа. Используя приведенные выше собственные значения нашей эрмитовой (4×4)-матрицы, получаем, что характеристический многочлен равен (x − 4,8573)(x − 12,9535)(x + 16,553)(x + 3,2578). Раскрытие скобок дает характеристический многочлен в виде x4 + 2x3 − 236x2 + 286x + 3393.
VI.
Все это было известно 100 лет назад… Другими словами, в то время, когда Давид Гильберт только приступал к изучению интегральных уравнений, причем исследование операторов играло там ключевую роль. В начале XX века другие математики — одни независимо, другие — вдохновившись работой Гильберта, — также были поглощены исследованием операторов. Операторы просто носились в воздухе. Гипотеза Римана в тот момент тоже висела в воздухе, но не до такой степени, хотя после доклада Гильберта в 1900 году и публикации книги Ландау в 1909-м всерьез задумываться о ней начали многие лучшие умы.
Поэтому не должно показаться слишком неожиданным, что два наиболее блестящих и широко мыслящих интеллекта своего времени смогли соединить эти две вещи. Один из этих интеллектов принадлежал Гильберту, а другой — Джорджу Пойа. И тот и другой, судя по всему, пришли к одному и тому же пониманию независимо друг от друга. Их мыслительные процессы, наверное, развивались примерно таким образом:
Имеется математический объект — эрмитова матрица, которая построена из комплексных чисел, но самая сокровенная и важная характеристика которой — набор собственных значений — неожиданным образом выражается одними лишь вещественными числами. А вот имеется функция — дзета-функция Римана, которая построена из комплексных чисел; и ее наиболее сокровенная и важная характеристика — набор ее нетривиальных нулей. (Для целей данного рассуждения забудем пока о других нулях.) Каждый из этих нулей лежит в критической полосе. Они симметричны относительно критической прямой с вещественной частью 1/2. Скажем, что типичный нуль имеет вид 1/2 + zi с некоторым числом z. Тогда Гипотеза Римана утверждает, что все z — вещественные числа.
Математики 1910-х годов на самом деле сказали бы «оператор», а не «матрица». Хотя матрицы и были разбросаны повсюду после их изобретения Артуром Кэли в 1856 году, они все же не стали всеобщим достоянием, пока около 1925 года на сцене не появилась квантовая механика. И все же здесь можно увидеть грубую аналогию. И набор собственных значений эрмитовой матрицы, и набор нетривиальных нулей дзета-функции представляют собой наборы чисел, возникающих из ключевого свойства существенно комплексных объектов и неожиданным образом оказывающихся вещественными. Отсюда возникает следующая
Гипотеза Гильберта-ПойаНетривиальные нули дзета-функции Римана соответствуют собственным значениям некоторого эрмитова оператора.
Происхождение этой гипотезы несколько туманно. И Гильберт, и Пойа должны были бы упоминать возможность некоторой подобной эквивалентности в лекциях или в разговорах в те годы (1910–1920). Но насколько мне удалось установить, ни один из них не воплотил эту мысль в опубликованной статье. Насколько я знаю — и, как сообщает Питер Сарнак, насколько он знает, — единственным письменным свидетельством того факта, что гипотеза Гильберта-Пойа вообще была высказана, остается письмо, которое 20 лет тому назад Пойа написал Эндрю Одлыжко и фрагмент которого приведен на рисунке 17.3. В нем Пойа сообщает, что Эдмунд Ландау задал ему следующий вопрос: «Можете ли вы придумать какую-нибудь физическую причину, в силу которой Гипотеза Римана была бы справедлива?» О том, какие именно предположения делал сам Гильберт, нет вообще никаких известных мне материальных свидетельств.
Рисунок 17.3. Фрагмент письма Джорджа Пойа к Эндрю Одлыжко.
Не следует, однако, забывать, что в математике начала XX века Гильберт был фигурой незаурядного масштаба, а также о том, что он жил и работал в немецкой академической среде, где на университетских профессоров их студенты и подчиненные взирали как на недоступных и всеведущих божеств, приближаться к которым следовало не иначе как с величайшим почтением. Не только к профессору нельзя было и помыслить себе обратиться как-нибудь иначе, нежели «господин профессор», но и жена его становилась «госпожа профессор». Однако для величайших из этих олимпийцев даже такого обращения оказывалось недостаточно. Наиболее выдающимся личностям немецкое правительство присваивало титул Geheimrat, «тайный советник», — примерный эквивалент посвящения в рыцари в Британии. Так что правильное обращение должно было звучать как «господин тайный советник», хотя сам Гильберт и не утруждал себя подобными формальностями.
В силу всего этого неудивительно, что если по удачному стечению обстоятельств вам случалось оказаться в достаточной близости от одного из этих небожителей, чтобы слышать его речь, то вам не скоро удавалось забыть его слова. Конечно, подобные гиганты вызывали к жизни определенное количество не подлежащих проверке апокрифов. И тем не менее, подсчитав все за и против, я склонен думать, что Гильберт в самом деле в какой-то момент высказал гипотезу Гильберта-Пойа или нечто ей эквивалентное. (Между прочим, если бы мы для краткости говорили просто «гипотеза Пойа», это привело бы к недоразумениям, поскольку имеется совершенно другая гипотеза, известная под таким названием.)
Глава 18. Теория чисел встречается с квантовой механикой
В предыдущей главе мы рассмотрели математические предпосылки и некоторые исторические обстоятельства, которые привели к гипотезе Гильберта-Пойа. Эта гипотеза значительно опередила свое время и с полвека пролежала на полке невостребованной.
Эти полвека, однако, оказались очень насыщенными событиями в области физики — вообще самыми насыщенными за всю ее историю. В 1917 году, как раз примерно в то время, когда была выдвинута эта гипотеза, Эрнест Резерфорд открыл делимость атома; 15 лет спустя Кокрофт и Уолтон провели первый в мире эксперимент по искусственному делению атома. Это, в свою очередь, явилось шагом к работам Энрико Ферми и к первой управляемой цепной ядерной реакции, осуществленной в 1942 году, а затем к первому ядерному взрыву 16 июля 1945 года.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."
Книги похожие на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."
Отзывы читателей о книге "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.", комментарии и мнения людей о произведении.