» » » » Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.


Авторские права

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь можно скачать бесплатно "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Астрель: CORPUS, год 2010. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Рейтинг:
Название:
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Издательство:
Астрель: CORPUS
Год:
2010
ISBN:
978-5-271-25422-2
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Описание и краткое содержание "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать бесплатно онлайн.



Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.






Здесь-то на сцене и появляются нетривиальные нули дзета-функции. Они тесно связаны (способом, который мы рассмотрим ниже во всех математических подробностях) с остаточным членом.

Хотя в ТРПЧ говорится об относительной ошибке, исследования в этой области в большей степени имеют дело с абсолютной ошибкой. На самом деле неважно, какую из них рассматривать. Относительная ошибка есть просто абсолютная ошибка, деленная на π(x), так что в любой момент несложно перейти от одной к другой. Итак, можно ли получить какие-нибудь результаты об абсолютном остаточном члене Li(x) − π(x)?


VII.

Взглянув на рисунок 7.6 и таблицу 14.1, можно с достаточной уверенностью заключить, что абсолютная разность Li(x) − π(x) положительна и возрастает. Численные свидетельства в пользу этого так убедительны, что Гаусс в своих собственных исследованиях полагал, что всегда так и происходит. Весьма вероятно, что исследователи поначалу соглашались с тем, или, по крайней мере, чувствовали уверенность в том, что π(x) всегда меньше чем Li(x). (Относительно мнения Римана по этому поводу ясности нет.) Поэтому статья Литлвуда 1914 года оказалась сенсацией, ибо в ней было установлено, что, напротив, существуют такие числа x, что π(x) больше чем Li(x). На самом деле доказано было гораздо большее.

Результат Литлвуда 1914 года

Разность Li(x) − π(x) изменяется от положительной к отрицательной и обратно бесконечно много раз.

Если учесть, что π(x) меньше, чем Li(x), для всех x, до которых смогли добраться даже самые мощные компьютеры, то где же находится первая точка перехода, первое «литлвудово нарушение», когда π(x) становится равной, а затем и превосходит Li(x)?

В подобных ситуациях математики отправляются на поиски того, что они называют верхней границей, — такого числа N, для которого можно доказать, что, каким бы ни был точный ответ на данный вопрос, он во всяком случае будет меньше, чем N. Установленные верхние границы такого рода нередко оказываются много больше, чем реальный ответ[131].

Так и обстояло дело с первой установленной верхней границей литлвудова нарушения. В 1933 году студент Литлвуда Сэмюель Скьюз показал, что если Гипотеза Римана верна, то переход должен наступать раньше, чем , что представляет собой число из примерно 10десять миллиардов триллионов триллионов цифр. Это не само число — это число цифр в том числе. (Для сравнения заметим, что общее количество всех атомов во Вселенной оценивается числом из примерно восьмидесяти цифр.) Этот монстр получил известность как «число Скьюза» — самое большое число, которое когда-либо до того следовало из математического доказательства.[132]

В 1955 году Скьюз улучшил свой результат, на этот раз даже не предполагая справедливости Гипотезы Римана, и оказалось, что новое число содержит 10одна тысяча цифр. В 1966 году Шерман Леман сумел понизить верхнюю границу до куда более разумного (по крайней мере, позволяющего себя записать) числа 1,165×101165 (числа, другими словами, из каких-то 1166 цифр), а потом еще сильнее, до 6,658×10370.

На момент написания книги (середина 2002 года) лучшее достижение принадлежит Картеру Бейсу и Ричарду Хадсону, которые также исходили из теоремы Лемана.[133] Они показали, что имеются литлвудовы нарушения в окрестности числа 1,39822×10316, а также привели некоторые аргументы в пользу того, что это нарушение может оказаться первым. (Статья Бейса и Хадсона оставляет открытой маленькую лазейку для существования нарушений на более малых высотах, возможно, даже на столь низкой высоте, как 10176. Они также установили существование грандиозной зоны нарушений вблизи числа 1,617×109608.)


VIII.

Колебания остаточного члена Li(x) − π(x) от положительных к отрицательным значениям и затем обратно происходящем не менее в пределах вполне определенных ограничений. Иначе не выполнялась бы ТРПЧ. Некоторые соображения по поводу природы этих ограничений возникли еще в результате усилий, направленных на доказательство ТРПЧ. Де ля Валле Пуссен включил в свое доказательство ТРПЧ некоторую оценку для функции, выражающей это ограничение. Пять лет спустя шведский математик Хельге фон Кох[134] доказал следующий ключевой результат, который я сформулирую в его современной записи.

Результат фон Коха 1901 года

Если Гипотеза Римана верна, то

π(x) = Li(x) + Ο(√x∙ln x).

Уравнение здесь читается так: «Пи от икс равно интегральному логарифму от икс плюс Ο большое от корня из икс, умноженного на логарифм икс». Теперь надо объяснить, что же такое «О большое».{3}

Глава 15. О большое и мебиусово мю

I.

Эта глава посвящена двум математическим темам, которые связаны с Гипотезой Римана, но помимо этого друг с другом никак не связаны. Эти темы — «Ο большое» и мю-функция Мебиуса. Рассмотрим сначала Ο большое.


II.

Когда Пауль Туран — великий венгерский математик, занимавшийся теорией чисел, — умирал от рака в 1976 году, его жена находилась у его постели. Она сообщила, что его последние слова были «Ο большое от единицы». Математики передают эту историю с благоговением: «Заниматься теорией чисел до самого конца! Истинный математик!»

Ο большое пришло в математику из книги Ландау 1909 года, влияние которой, как я уже рассказывал, было поистине огромным. Ландау на самом деле не изобрел Ο большое. Он чистосердечно признается на странице 883 своего Handbuch, что позаимствовал его из трактата Пауля Бахманна 1894 года. Поэтому довольно несправедливо называть его «ландаувским О большим» равно как несправедливо и то, что многие математики, по-видимому, полагают, что именно Ландау его изобрел. Ο большое присутствует повсеместно в аналитической теории чисел и даже просочилось оттуда в другие области математики.

Ο большое — это способ наложить ограничение на величину функции, когда аргумент устремляется к (как правило) бесконечности.

Определение Ο большого

Функция A есть Ο большое от функции B, если для достаточно больших аргументов величина A никогда не превосходит некоторого фиксированного кратного величины B.

Вслед за Паулем Тураном рассмотрим Ο большое от единицы. «Единица» здесь понимается как функция, причем функция простейшего вида. Ее график — горизонтальная прямая, проходящая на высоте 1 над горизонтальной осью. Для вообще любых аргументов значение этой функции равно… просто 1. Ну и что же тогда означает, что функция f(x) есть Ο большое от единицы? По только что данному определению это означает, что, когда аргумент x уходит на бесконечность, f(x) никогда не превзойдет некоторого фиксированного кратного 1 — другими словами, график функции f(x) навсегда останется ниже некоторой горизонтальной прямой. Это полезная информация о данной нам функции f(x). Существует множество функций, для которых это не так. Это не так, например, для x2 и для x в любой положительной степени, ни для ex ни даже для ln x.

На самом деле Ο большое означает еще кое-что, кроме этого. Заметим, что в определении сказано «величина A». Это означает «значение A без учета знака». Величина числа 100 есть 100; величина числа −100 есть также 100. Ο большое не принимает в расчет знак минус. Сказать, что некоторая функция f(x) есть Ο большое от единицы, означает сказать, что f(x) навсегда заключена между двумя горизонтальными прямыми, одна из которых проходит выше горизонтальной оси, а другая проходит на таком же расстоянии ниже.

Как уже говорилось, очень многие функции не являются Ο большим от единицы. Простейшая из них — это функция x, то есть функция, значения которой всегда равны ее аргументу. Ее график — диагональная прямая, покидающая рисунок в верхнем правом углу. Ясно, что она не заключена между какими бы то ни было горизонтальными прямыми. Вне зависимости оттого, сколь широко вы расположите эти горизонтальные прямые, функциях рано или поздно вырвется за их пределы. Это останется верным, если уменьшить наклон. Функции 0,1x (показана на рисунке 15.1), 0,01x, 0,001x и 0,0001x все в конце концов прорвутся через любые горизонтальные прямые, которые вы установите в качестве ограничения. Ни одна из них не является Ο большим от единицы.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Книги похожие на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Джон Дербишир

Джон Дербишир - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Отзывы читателей о книге "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.