» » » » Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.


Авторские права

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь можно скачать бесплатно "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Астрель: CORPUS, год 2010. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Рейтинг:
Название:
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Издательство:
Астрель: CORPUS
Год:
2010
ISBN:
978-5-271-25422-2
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Описание и краткое содержание "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать бесплатно онлайн.



Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.






Будучи одной из тех потрясающих личностей, существование которых опровергает взгляд на ход истории как на театр теней — бездушную пьесу, разыгрываемую обезличенными силами, — Петр продолжил реформы в сфере управления, дворянства, торговли, образования и даже повседневного одеяния своих подданных. Не все из этого заработало — другими словами, не все закрепилось; и не все достигло сумрачных, скрытых в лесах глубин этой обширной и древней страны; но нет сомнения, что положение, в котором Петр оставил Россию, было совсем не похоже на то, в котором он ее принял.

И, что имеет прямое отношение к теме данной книги, он превратил ее в место, гостеприимное для математиков и математики![29]


VI.

В январе 1724 года Петр издал указ об основании Академии наук в Санкт-Петербурге. В указе объяснялось, что в обычной ситуации академия наук, где ученые занимаются исследованиями и изобретениями для блага государства, отличается от университета, предназначение которого состоит в обучении молодых людей. Однако из-за острого недостатка образованных людей в России под управлением Санкт-Петербургской академии будут находиться еще университет и гимназия (т.е. учреждение для среднего образования). Предполагалось, что академия будет иметь также свои собственные обсерватории, лаборатории, мастерские, издательство, печатный цех и библиотеку. Петр ничего не делал наполовину.

Нехватка образования в России была и правда столь высока, что попросту не существовало россиян, способных стать членами академии. Более того, поскольку в России отсутствовало достаточное число начальных и средних школ, не было даже молодых россиян, в достаточной степени подготовленных для того, чтобы стать студентами в университете. Эти проблемы были решены путем импорта требуемого персонала. В Европе подобная практика была вполне распространенной. Первым директором Парижской академии наук, основанной за 60 лет до того, был голландский физик Кристиан Гюйгенс. Правда, Санкт-Петербург находился далеко от главных центров европейской культуры, а западноевропейцы все еще воспринимали Россию как страну темную и варварскую, и поэтому им следовало предложить очень привлекательные условия. Как бы то ни было, в конце концов колеса механизма закрутились, нехватка университетских студентов была компенсирована за счет импорта восьми немецких юношей. Санкт-Петербургская академия распахнула свои двери в августе 1725 года — слишком поздно для того, чтобы царь Петр мог председательствовать на церемонии: он умер за шесть месяцев до этого.

Среди иностранных ученых, присутствовавших на первом заседании Санкт-Петербургской академии наук, были два брата, Николай и Даниил Бернулли. Им было соответственно 30 и 25 лет — то были сыновья Иоганна Бернулли из швейцарского Базеля, того самого господина, с которым мы уже встречались в главе 1.iii в связи с гармоническим рядом. (Имелась целая династия математиков Бернулли; в описываемом поколении был и третий брат, который последовал примеру отца и стал профессором математики в Базельском университете и который «воплощал в себе математический гений своего родного города во второй половине XVIII столетия», как написано в «Словаре научных биографий».)

К несчастью, проведя менее года в Санкт-Петербурге, Николай Бернулли умер («от чахоточной лихорадки»), в результате чего в академии образовалась вакансия. Даниил Бернулли еще в Базеле был знаком с Леонардом Эйлером и сейчас же рекомендовал его. Эйлер был рад возможности занять академический пост в столь молодом возрасте и прибыл в Санкт-Петербург 17 мая 1727 года, через месяц после своего двадцатилетия.

По несчастливому стечению обстоятельств это произошло спустя десять дней после смерти императрицы Екатерины, жены Петра, которая наследовала ему на троне и которая продолжала воплощать в жизнь его план устройства академии. Для России наступали не лучшие времена. Пятнадцатилетний период между смертью Петра и воцарением его дочери Елизаветы был временем слабого, безвольного руководства, политики временщиков и периодических приступов ксенофобии. Все враждующие кланы содержали сети шпионов и доносчиков, и атмосфера в столице (каковой теперь являлся Санкт-Петербург) менялась с «плохо» на «очень плохо». В правление жестокой, коварной и сумасбродной императрицы Анны Иоанновны (1730–1740) Россия скатилась к одному из периодов государственного террора, к которому сама императрица испытывала особую склонность: в течение этого времени не прекращались суды по обвинению в измене, массовые казни и другие зверства. Этот период получил печальную известность под названием бироновщины, по имени фаворита Анны Иоанновны немца Эрнста Иоганна Бирона[30], на которого простые россияне возлагали всю вину.

Эйлер стойко выносил все это в течение 13 лет, с головой погрузившись в работу и твердо держась подальше от двора с его интригами. «Общая осмотрительность привила ему неистребимую привычку к работе», — пишет Э.Т. Белл, и это кажется разумным объяснением невероятной продуктивности Эйлера. Даже сейчас еще не закончено полное издание собрания его трудов. К настоящему моменту оно состоит из 29 томов по математике, 31 по механике и астрономии, 13 по физике и 8 томов переписки.

Но для друга Эйлера Даниила Бернулли, с которым они вместе поселились в первые годы жизни в Санкт-Петербурге, удушливая политическая атмосфера в послепетровской России оказалась слишком тяжелой. В 1733 году Даниил уехал обратно в Базель, а Эйлер возглавил кафедру математики в академии. Это позволило ему получать доход, достаточный для женитьбы. Его избранницей стала швейцарская девушка Екатерина Гзель, дочь художника, жившего в то время в Санкт-Петербурге.

В такой обстановке в 1735 году Эйлер и решил базельскую задачу, которую мы рассмотрим в следующей главе. Двумя годами позже в небольшом меморандуме о бесконечных рядах Эйлер получил результат, который я назвал Золотым Ключом и которому будет посвящена первая половина главы 7. Коротко говоря, Эйлер — одно из главных действующих лиц в нашем повествовании, однако это станет понятно немного позднее, по мере развертывания математической части истории.


VII.

К 1741 году Эйлер устал от окружавших его доносов и публичных экзекуций «изменников». На прусский трон к этому моменту взошел Фридрих Великий, уже приступивший к своему плану превращения прусского королевства (до 1700 года — всего лишь герцогства) в одно из наиболее могущественных государств в Европе. Он запланировал создание Академии наук в Берлине с целью заменить ею или с ее помощью вдохнуть новую жизнь в находившееся при смерти Научное общество этого города; он пригласил Эйлера — к этому моменту знаменитого по всей Европе — в качестве директора математического класса академии. Эйлер прибыл в Берлин 25 июля 1741 года, после месячного путешествия по морю и суше из Санкт-Петербурга. Мать Фридриха София-Доротея Английская (приходившаяся сестрой Георгу II) понравилась молодому Эйлеру (ему было всего 34 года), но не могла толком его разговорить. «Почему бы вам не побеседовать со мной?» — спросила она, на что Эйлер ответил: «Потому, мадам, что я приехал из страны, где тех, кто много говорит, отправляют на виселицу».

Но вообще-то Эйлеру полагалось заговорить. Это было частью плана по переселению его в Берлин. Фридрих желал видеть свой двор своего рода салоном, где блестящие люди обмениваются блестящими речами. Эйлер в самом деле был блестящим человеком, но, к сожалению, только в математике. Его высказывания на темы философии, литературы, религии, а также о событиях в мире, хотя и демонстрировали его хорошую информированность и здравый смысл, оставались довольно общими и невыразительными. Фридрих, кроме того, был эгоистом, любившим манипулировать людьми и хотя в принципе желал бы окружить себя гениями, в реальности же предпочитал посредственностей, которые ему льстили. Если не считать нескольких светил, таких как Вольтер и Эйлер, общий интеллектуальный уровень при дворе Фридриха, судя по всему, несколько недотягивал до выдающегося. В 1745-1747 годах Фридрих построил для себя летний дворец Сан-Суси в Потсдаме, в 20 милях от Берлина. (Эйлер помогал разработать систему водяных насосов для дворца.) Кто-то из гостей Сан-Суси спросил одного из наследных принцев: «Чем вы здесь занимаетесь?» Принц ответил: «Мы спрягаем глагол s'ennuyer». «S'ennuyer» означает «скучать». Языком двора Фридриха был французский — язык высшего общества по всей Европе.[31]

Эйлер задержался в Берлине на 25 лет, пережив там все ужасы Семилетней войны, когда иностранные армии дважды занимали Берлин, а каждый десятый подданный Фридриха умер от голода, болезни или пули. К тому времени на российском престоле воцарилась вторая Екатерина — Екатерина Великая. (Занятно, что на протяжении двух третей XVIII века — 67 лет из 100 — Россия, одна из наиболее трудных в управлении стран, управлялась женщинами, и в целом весьма успешно). Екатерина выказывала все признаки просвещенного монарха, при этом твердо удерживая трон. Более того, она была немецкой принцессой, и не исключено, что Эйлер каким-то образом свел с ней знакомство при дворе Фридриха еще до того, как ее отправили в Санкт-Петербург, чтобы выдать замуж за внука Петра Великого. Так или иначе, Эйлер оставил жеманство и интриги Сан-Суси и снова занял свою должность в Санкт-Петербурге — должность, которая невероятным образом ждала его, оставаясь незанятой. Последние 17 лет своей жизни он провел в России, до конца сохраняя работоспособность, и умер в возрасте 76 лет, полный сил и энергии (если не считать оставившего его зрения), в одно мгновение, держа внука на коленях.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Книги похожие на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Джон Дербишир

Джон Дербишир - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Отзывы читателей о книге "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.