» » » » Морис Клайн - Математика. Утрата определенности.


Авторские права

Морис Клайн - Математика. Утрата определенности.

Здесь можно скачать бесплатно "Морис Клайн - Математика. Утрата определенности." в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Мир, год 1984. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Морис Клайн - Математика. Утрата определенности.
Рейтинг:
Название:
Математика. Утрата определенности.
Автор:
Издательство:
Мир
Год:
1984
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Математика. Утрата определенности."

Описание и краткое содержание "Математика. Утрата определенности." читать бесплатно онлайн.



Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.

Рассчитана на достаточно широкий круг читателей с общенаучными интересами.






Так как индийцы питали особую склонность к арифметике и внесли основной вклад в развитие арифметики и алгебры, их деятельность привела к расширению той части математики, которая опиралась на эмпирическую и интуитивную основу.

В то время как индийцы практически игнорировали дедуктивную геометрию, арабы предприняли критическое изучение геометрических работ древних греков и по достоинству оценили роль дедуктивного доказательства в становлении геометрии. Однако в отношении к арифметике и алгебре, которым в арабской математической литературе отводилась более значительная роль, чем геометрии, арабы фактически мало чем отличались от индийцев. Арабов, как и их индийских предшественников, устраивало рассмотрение арифметики и алгебры на эмпирической, конкретной и интуитивной основе. Правда, некоторые арабские математики приводили геометрические соображения в обоснование решения квадратных уравнений, но в целом подход к решению и методология у арабов в отличие от греков классического периода по существу были алгебраическими. Кубические уравнения, например уравнение x3 + 3x2 + 7x − 5 = 0, арабы решали, используя только геометрические построения, так как алгебраический метод решения таких уравнений еще не был открыт. Но их геометрические построения было бы невозможно выполнить с помощью циркуля и линейки, а доводы, приводимые в обоснование построений, не имели строго дедуктивного характера. На протяжении всех столетий, пока арабы активно занимались математикой, в своих оригинальных работах они мужественно сопротивлялись соблазнам точного рассуждения.

Наиболее интересной особенностью математики индийцев и арабов является их внутренне противоречивое представление о предмете математического исследования. То, что египтяне и вавилоняне были склонны воспринимать немногие известные им арифметические и геометрические правила на эмпирической основе, само по себе не удивительно. Эмпирическая основа естественна почти для всех видов человеческого знания. Но индийцам и арабам было известно совершенно новое понятие математического доказательства, доставшееся им в наследство от греков. Однако они не позаботились о том, чтобы применить понятие дедуктивного доказательства в арифметике и алгебре. Отношение индийцев к математике можно в какой-то степени объяснить. Индийцы не придавали особого значения тем немногим достижениям греческой математики классического периода, которые были им известны, и следовали в основном александрийскому подходу к арифметике и алгебре. Но арабы были хорошо осведомлены о греческой геометрии и даже, как упоминалось, предприняли попытку критического пересмотра результатов своих предшественников. Кроме того, на протяжении нескольких веков и арабы, и индийцы находились в благоприятных для занятий чистой наукой условиях — и ничто не вынуждало математиков жертвовать доказательством ради немедленной практической отдачи. Как могло случиться, что два эти народа подошли к развитию двух областей математики совершенно иначе, чем греки классического периода и многие из александрийцев?

На этот вопрос существует несколько возможных ответов. Прежде всего, индийские и арабские математики, несмотря на арабские комментарии к дедуктивной геометрии, по существу некритически отнеслись к греческому наследию. Возможно, именно поэтому они восприняли математику такой, какой она пришла к ним: геометрия, по их мнению, должна была оставаться дедуктивной, арифметика и алгебра — эмпирическими и эвристическими. Возможно и другое объяснение: и индийцы, и арабы, в особенности последние, по достоинству оценили высокие стандарты строгости в геометрии, столь разительно отличающиеся от требований, предъявляемых к арифметике и алгебре, но не сумели подвести под арифметику надлежащий логический фундамент. В пользу такого предположения говорит хотя бы то, что арабы приводили в подтверждение решений квадратных и кубических уравнений некоторые геометрические соображения.

Не исключены и другие объяснения. Так, индийцы и арабы отдавали предпочтение арифметике, алгебре и алгебраической формулировке тригонометрических соотношений. Подобное предрасположение может свидетельствовать об ином складе ума, оно может быть обусловлено и какими-то особенностями индийской и арабской культур. Обе эти цивилизации превыше всего ставили запросы практики, а для удовлетворения практических потребностей — как мы уже отмечали, говоря о развитии математики в александрийский период, — были необходимы количественные результаты, которые давали именно арифметика и алгебра. В пользу предположения о различных складах ума косвенно свидетельствует и реакция европейцев на математическое наследие, доставшееся им от индийцев и арабов. Как мы увидим в дальнейшем, европейцы были гораздо сильнее, чем арабы и индийцы, обеспокоены логическими проблемами в построении арифметики и геометрии. Безрассудная смелость индийцев и арабов вывела на передний план арифметику и алгебру (если говорить о практической полезности), поставив их почти наравне с геометрией (см., например, [9], [36], [37]).

Когда в конце средневековья и в период Возрождения европейцы — отчасти через арабов, отчасти непосредственно из сохранившихся греческих рукописей — ознакомились с существующим уровнем достижений математики, они своеобразно разрешили дилемму, возникшую в связи с разделением математики на два типа «знания». Настоящей математикой, по мнению европейцев, заведомо была только дедуктивная геометрия греков. Но в то же время они не могли и не хотели отрицать полезность и эффективность арифметики и алгебры, которые хотя и были лишены твердого логического фундамента, но уже значительно усовершенствовались по сравнению с классической древностью.

Первая проблема, с которой столкнулись европейцы, сводилась к старому вопросу о том, как следует относиться к иррациональным числам. Итальянский математик Лука Пачоли (ок. 1445-1514), немецкий монах и профессор математики в Йене Михаэль Штифель (1486(?)-1567), итальянский врач и ученый Джироламо Кардано (1501-1570) и фламандский военный инженер Симон Стевин (1548-1620) свободно использовали иррациональные числа, следуя здесь традиции индийцев и арабов, и ввели много новых типов иррациональностей. Так, Штифель оперировал с иррациональными выражениями вида  а Джироламо Кардано — с иррациональностями, содержащими кубические корни. Примером того, насколько свободно и широко европейцы использовали иррациональности, может служить выражение для числа π, полученное Франсуа Виетом (1540-1603). Рассматривая правильные многоугольники с 4, 8, 16 и более сторонами, вписанные в окружность единичного радиуса, Виет обнаружил, что

Иррациональные числа нашли широкое применение и в связи с одним из новых достижений математики эпохи Возрождения — логарифмами. Логарифмы положительных чисел были изобретены в конце XVI в. Джоном Непером{68} (1550-1617) для той самой цели, для которой они с тех пор и употребляются, — для ускорения арифметических вычислений. И хотя логарифмы большинства положительных чисел иррациональны (а предложенный Непером метод вычисления логарифмов основан на свободном обращении с иррациональными числами), все математики приветствовали полезное изобретение, избавившее их от излишнего труда.

Вычисления с иррациональностями производились без каких-либо затруднений, но кое-кого все же беспокоила проблема, можно ли считать иррациональные числа «настоящими». Так, Штифель в своем главном труде «Полная арифметика» (Arithmetica integra, 1544), посвященном арифметике и алгебре, вторя Евклиду, высказывал предположение, что величины (геометрическая теория Евклида) отличны от чисел; однако, следуя духу достижений своего времени, он выражал иррациональные числа в десятичной системе. Штифеля беспокоило, что для записи иррационального вдела в десятичной системе требуется бесконечно много знаков. С одной стороны, рассуждал он,

так как при доказательстве [свойств] геометрических фигур иррациональные числа заменяют рациональные всякий раз, когда те отказываются служить нам, и доказывают все то, что не могли бы доказать те… приходится признать, что они [иррациональные числа] являются истинными числами. К тому же нас вынуждают и результаты, проистекающие из их применения, которые нельзя не признать подлинными, достоверными и незыблемыми. С другой стороны, иные соображения заставляют нас отрицать, что иррациональные числа вообще являются числами. Такое сомнение подкрепляется тем, что если мы попытаемся записать иррациональные числа в десятичной форме… то обнаружим, что они непрестанно ускользают от нас и ни одно из них не удается постичь точно… Число же, которому в силу его природы недостает точности, не может быть названо истинным числом… Следовательно, подобно тому как не является числом бесконечность, иррациональное число также не является истинным числом, а как бы скрыто от нас в облаке бесконечности.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Математика. Утрата определенности."

Книги похожие на "Математика. Утрата определенности." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Морис Клайн

Морис Клайн - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Морис Клайн - Математика. Утрата определенности."

Отзывы читателей о книге "Математика. Утрата определенности.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.