Борис Шулицкий - Мадэализм — концепция мировоззрения III тысячелетия (заметки по поводу модернизации физической теории)

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Мадэализм — концепция мировоззрения III тысячелетия (заметки по поводу модернизации физической теории)"
Описание и краткое содержание "Мадэализм — концепция мировоззрения III тысячелетия (заметки по поводу модернизации физической теории)" читать бесплатно онлайн.
Предложен вариант интегральной научно-философской концепции, на основе которой возможна модернизация современной физической теории. В основе концепции лежит предположение о том, что внутренняя логическая организация математической теории так же, как и структура взаимосвязей логических форм общей теории развития, (диалектики), отражает универсальную структурную организацию актуальной действительности. Исходя из этого положения, предложена концептуальная модель структуры актуальной реальности, преодолевающая крайности идеализма и материализма, и на основе которой предпринята попытка соединить представления Западной и Восточной Традиций. На основе синтеза представлений кибернетики и фрейдизма оригинально решается проблема роли и места органической жизни и человека, как ее высшего проявления, в актуальной реальности. В рамках концепции предложены направления модернизации математической и физической теорий.
Книга адресована широкому кругу читателей, интересующихся мировоззренческими проблемами, как изложение основ альтернативной мировоззренческой концепции.
«Мышление древних не знало идеи развития в точном смысле слова, так как время тогда понималось как протекающее циклически. Представление об абсолютно совершенном космосе, на которое опиралось античное мышление, исключало постановку вопроса о направленных изменениях, ведущих к возникновению принципиально нового. Идея направленности времени выдвигается в христианстве, которое относит ее лишь к сфере духа. Только в эпоху Возрождения с возникновением экспериментальной науки идея линейного направления времени распространяется на природу — формируется представление о естественной истории, то есть необратимых и направленных изменениях природных объектов. Это нашло выражение в космогонических гипотезах, а затем в теориях эволюции в зоологии и биологии» (13,400). Натурфилософские концепции Дж. Бруно, Н. Кузанского, И. Кеплера и Г. Галилея явились тем мировоззренческим фундаментом, опираясь на который Р. Декарт пришел к необходимости введения переменной величины в математическую теорию. Дальнейшее развитие математического языка описания движения, изменения привели к созданию Ньютоном и Лейбницем дифференциального и интегрального исчислений, которые базировались на сформулированных Декартом представлениях о переменной величине. «Поворотным пунктом в математике, — замечает в связи с этим Ф. Энгельс, — была Декартова переменная величина. Благодаря этому в математику вошли движение и тем самым диалектика и благодаря этому же стало немедленно необходимым дифференциальное и интегральное исчисление, которое тотчас и возникает и которое было в общем и целом завершено, а не изобретено, Ньютоном и Лейбницем» (7,573). Таким образом, именно становление понятий «изменение» и «развитие» в философской науке привело к изобретению исчисления бесконечно-малых в семнадцатом веке, которое в совокупности с теорией пределов, наконец, прояснило пути решения проблемы прерывного-непрерывного, конечного-бесконечного.
Но теория развития не остановилась на представлениях эпохи Возрождения. Глубокую философскую разработку она получила в немецкой классической философии XVIII—XIX в.в., особенно у Гегеля, «открывшего», по словам К. Маркса, и построившего диалектику как учение о всеобщем развитии духа. «Диалектический метод, — утверждает Гегель, — есть душа всякого научного развертывания мысли», именно он и только он «вносит необходимую внутреннюю связь в содержание науки» (53,63). Дальнейшую разработку, уже в материалистическом аспекте, учение о развитии получило в марксизме, трактующем развитие как универсальное свойство материи и, вместе с тем, как всеобщий принцип, служащий основой объяснения истории общества и познания. Показана всеобщность, универсальность диалектического механизма процессов развития. Однако до настоящего времени эти философские разработки не нашли адекватного отражения в математическом аппарате, то есть не «переведены» на язык науки и, соответственно, не доступны современному естествознанию.
Между тем одна из актуальнейших дискуссионных проблем современного естествознания — проблема «нарушения причинности», потери детерминизма на микроуровне, проблема соотношения причины и следствия (74). В собственно математике это так называемый «третий кризис основ», связанный с теорией множеств и соотношением части и целого (9). Проблемы части и целого возникли и в квантовой физике. Не имеют ли эти проблемы общих корней?
В каком же направлении искать пути выхода из кризиса? Может быть, исторически проверенным методом — использовать философию как матрицу научного поиска?
Используя историческую аналогию, можно предположить, что в математике должен появится новый теоретический уровень, который отразит универсальный всеобщий диалектический характер процессов движения, изменения, развития, совершающегося в соответствии со всеми требованиями развертывания диалектического противоречия. Тем самым математика переведет на язык науки тот потенциал диалектической теории, который накоплен человечеством за последние несколько столетий. В этом, конечно, есть серьезные трудности, так как «противоречие, — по словам Гегеля, — выступает непосредственно лишь в определении отношения. А в движении, импульсе и т.п. противоречие скрыто для представления за простотой этих определений». Но, тем не менее, «все вещи противоречивы в самих себе». «Противоречие — это имманентный источник движения, развития. Это принцип всякого самодвижения». «Противоречие — вот что на самом деле движет миром» (23).
Согласно мадэалистической концепции, в фундаменте любых процессов актуальной действительности лежит универсальный структурный «кирпичик мироздания» — структурный слой. Диалектика структурного слоя, рассмотренная в разделах 7.1 и 7.2, являясь отражением универсального механизма эволюции, заключает в себе мощный методологический потенциал. Появилась возможность создать эквивалентную конструкцию и в математической теории. Предположительно область математики, оперирующую формальными конструкциями такого рода, можно определить как «детерминальное» исчисление. Детерминальное исчисление позволит рассматривать статику и динамику причинно-следственных связей и сделать анализ соотношения части и целого. Детерминальное исчисление уже давно востребовано естествознанием, так как проблемы его (естествознания) модернизации связаны в свою очередь с проблемой модернизации математической теории как языка науки. Детерминальное исчисление предполагает введение новой математической символики, отражающей универсальный диалектический характер любых процессов. Следует заметить, что в истории математики нередко лишь благодаря новому способу записи становились возможными новые результаты, что отражает глубокую зависимость между содержанием и формой. Одним из примеров этого является введение индийско-арабских цифр, другим примером может быть символика Лейбница в анализе. «Лейбниц — один из самых плодовитых изобретателей символов. Немногие так хорошо понимали единство формы и содержания. На этом философском фоне можно понять, как он изобрел анализ: это было результатом его поисков „универсального языка“, в частности языка, выражающего изменение и движение» (5,151). Подходящие обозначения лучше отражают действительность, чем неудачные, и они оказываются как бы наделенными собственной жизненной силой, которая, в свою очередь, порождает новое знание. Таким образом, возможно, требуется введение в математическую теорию новой символики, которая (в рамках детерминального исчисления) отразит универсальный диалектический характер процессов изменения, развития.
Интересно заметить, что в последовательности возникновения основных разделов математики проявляется закон отрицания отрицания (9,70) (см. схему).
«Так, — пишет Н.И. Жуков, — создание системы символов для обозначения переменных величин в алгебре (работы Ф. Виета), введение буквенного коэффициента в уравнения представляет собой как бы возврат к арифметике, но на новой основе. В свою очередь, возникновение математического анализа есть не что иное, как распространение понятия переменной величины из области дискретного на область непрерывного с последующим освобождением функций от их геометрической интерпретации. Наконец, появление теоретико-множественного подхода определило перенесение центра тяжести снова на область дискретного» (9,70). Таким образом, следующий раздел математики должен перенести центр тяжести опять в область непрерывного, то есть исходить из теории множеств и иметь какие-то аналогии с разделом исчисления бесконечно малых. На наш взгляд, таким разделом может стать детерминальное исчисление.
Математической дисциплиной, наиболее близко подошедшей к осознанию необходимости символьного отражения диалектического характера процессов изменения, развития, является математическая логика. «Идея логического исчисления высказываний, суждений содержалась еще в трудах Лейбница (в работе „Искусство комбинаторики“, например). Однако основы математической логики удалось заложить лишь в XIX веке Дж. Булю, который создал алгебру логики. Впрочем, его работы современниками всерьез не принимались и многими, даже видными, учеными рассматривались как простой курьез, плод досужего ума, в лучшем случае. Одновременно основы новой науки успешно разрабатывал А. Морган, но главным образом — Э. Шредер, так что начиная с конца XIX века она стала называться алгеброй Буля — Шредера. Большой вклад в ее дальнейшее развитие внесли П.С. Порецкий, Фреге, Пеано и, конечно же, известный философ Рассел, который совместно с А. Уайтхедом в начале XX века создал капитальный труд „Принципы математики“. Именно с Фреге и Рассела начинается новый этап в развитии логики как исчисления. С середины XX века она получила особенно большое развитие в связи с успехами кибернетики и информатики и является ныне важнейшей областью математического знания» (9,59).
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Мадэализм — концепция мировоззрения III тысячелетия (заметки по поводу модернизации физической теории)"
Книги похожие на "Мадэализм — концепция мировоззрения III тысячелетия (заметки по поводу модернизации физической теории)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Борис Шулицкий - Мадэализм — концепция мировоззрения III тысячелетия (заметки по поводу модернизации физической теории)"
Отзывы читателей о книге "Мадэализм — концепция мировоззрения III тысячелетия (заметки по поводу модернизации физической теории)", комментарии и мнения людей о произведении.