» » » » Елена Середкина - Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия.


Авторские права

Елена Середкина - Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия.

Здесь можно скачать бесплатно "Елена Середкина - Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия." в формате fb2, epub, txt, doc, pdf. Жанр: Философия, издательство Пермский Государственный Технический Университет, год 2009. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия.
Издательство:
Пермский Государственный Технический Университет
Жанр:
Год:
2009
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия."

Описание и краткое содержание "Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия." читать бесплатно онлайн.



Приведены отрывки из работ философов и историков науки XX века, в которых отражены основные проблемы методологии и истории науки. Предназначено для аспирантов, соискателей и магистров, изучающих историю, философию и методологию науки.






5.442. Если нам дано предложение, то вместе с ним уже даны результаты всех операций истинности, основанием которых оно является.

5.45. Если есть логические первичные знаки, то правильная логика должна уяснить их место по отношению друг к другу и оправдать их существование. Конструкция логики из ее первичных знаков должна стать ясной.

5.451. Если логика имеет исходные понятия, то они должны быть независимыми друг от друга. Если введено исходное понятие, то оно должно быть введено во всех связях, в которых оно вообще имеет место. Следовательно, нельзя вводить понятие сначала для одной связи, а потом для другой. Например: если введено отрицание, то мы должны его понимать в предложениях формы "~ p" так же, как в предложениях вида — ~ p V q)", "($ х). ~fx " и других. Мы не можем вводить его сначала для одного класса случаев, потом для другого, потому что тогда оставалось бы сомнительным, является ли его значение в обоих случаях одинаковым, и не было бы основания для употребления в обоих случаях одного и того же способа символизации.

(Короче, для введения первичных знаков имеет значение mutatis mutandis, то же самое, что Фреге в работе "Основные законы арифметики" говорил относительно введения знаков через определения.)

5.452. Введение нового знака в символизм логики должно быть всегда чревато последствиями. Ни один новый знак не должен вводиться в логике — так сказать, с совершенно невинной миной — в скобках или в сноске.

(Так, в "Principia Mathematical Рассела и Уайтхеда встречаются словесные определения и исходные предложения. Почему здесь внезапно появляются слова? Это нуждается в оправдании. Но оправдания нет и не может быть, так как этот процесс фактически не дозволен.)

Но если введение нового знака является необходимо доказанным в каком-либо месте, то должны тотчас же спросить: где должен этот знак постоянно применяться? Отныне его место в логике должно быть выяснено.

5.453. Все числа в логике должны допускать оправдание.

Или — скорее — должно выявиться, что в логике нет никаких чисел.

Нет никаких привилегированных чисел.

5.454. В логике нет соседства, нельзя дать никакой классификации.

В логике не может быть более общего и более особенного.

5.4541. Решения логических проблем должны быть простыми, так как они устанавливают стандарт простоты.

Люди всегда догадывались, что должна быть дана область вопросов, ответы на которые априори симметричны и объединяются в законченные регулярные структуры.

5.46. Если логические знаки вводятся правильно, то тем самым вводится смысл всех их комбинаций, следовательно, не только "pVq", но также и "~(pV~q)" и т. д. Тем самым вводится результат всех возможных комбинаций скобок. И благодари этому становится ясным, что собственно общими первичными знаками являются не "p\/q", ($ х) f(x)" и т. д., а самая общая форма их комбинаций.

5.461. Большое значение имеет тот кажущийся неважным факт, что логические псевдоотношения, как V и É, нуждаются в скобках, в отличие от действительных отношений.

Употребление, скобок при этих псевдопервичных знаках уже указывает на то, что они не являются в действительности первичными знаками. Все-таки, по-видимому, никто не верит, что скобки имеют самостоятельное значение.

5.4611. Логические знаки операций являются пунктуациями.

5.47. Ясно, что все то, что может быть сказано заранее о форме всех предложений вообще, может быть сказано за один раз.

Ведь все логические операции уже содержатся в элементарном предложении. Потому что "о" говорит то же самое, что и "($ х)fх.х. == а".

Где есть композиция, там есть аргумент и функция, а где есть они, там есть уже все логические константы.

Можно было бы сказать: одна логическая константа есть то, что все предложения, по своей природе, имеют общим друг с другом.

Но это есть общая форма предложения.

5.471. Общая форма предложения есть сущность предложения.

5.4711. Дать сущность предложения значит дать сущность всех описаний, следовательно, дать сущность мира.

5.472. Описание самой общей формы предложения есть описание одного и единственного общего первичного знака в логике.

5.473. Логика должна сама о себе заботиться. Возможный знак тоже должен быть способен обозначать.

Все то, что в логике возможно, является также дозволенным. ("Сократ тождествен" ничего не означает потому, что нет свойства, называемого "тождественный". Предложение бессмысленно потому, что мы не дали некоторого произвольного определения, а не потому, что символ сам по себе не дозволен.)

В некотором смысле мы не можем делать ошибок в логике.

5.4731. Самоочевидность, о которой так много говорил Рассел, в логике может стать лишней только благодаря тому, что язык сам предотвращает каждую логическую ошибку. Априорность логики заключается в том, что нельзя нелогически мыслить.

5.4732. Мы не можем дать знаку неправильный смысл.

5.47321. "Бритва" Оккама не является, конечно, произвольным правилом или правилом, оправданным своим практическим успехом: она просто говорит, что не необходимый элемент символики ничего не значит.

Знаки, служащие для одной цели, логически эквивалентны; знаки, не служащие ни для какой цели, логически незначимы.

5.4733. Фреге говорит: каждое законно образованное предложение должно иметь некоторый смысл; и я говорю: каждое возможное предложение образовано законно, и если оно не имеет смысла, то это может быть только потому, что мы не дали некоторым его составным частям никакого значения…

5.474. Количество необходимых основных операций зависит только от нашего способа записи.

5.475. Это только вопрос построения системы знаков с определенным числом измерений-с определенной математической множественностью.

5.476. Ясно, что здесь речь идет не о количестве исходных понятий, которые должны обозначаться, но только о выражении правила.

5.501. Выражение в скобках, члены которого являются предложениями, я обозначаю — если последовательность членов в скобках безразлична — знакам вида "x". "X" есть переменная, значения которой являются членами выражения, заключенного в скобки; и черточка над переменной означает, что она заменяет все свои значения в скобках.

(Если, например, "x" имеет три значения: Р, W, R, то, следовательно, (x) = (Р, W, R)

Значения переменных устанавливаются. Установление есть описание предложений, заменяемых переменной. Как происходит описание членов выражения, заключенного в скобки, не существенно.

Мы можем различать три вида описаний:

I. Прямое перечисление. В этом случае мы можем просто вместо переменной поставить ее постоянное значение.

II. Указание функции fx, значения которой для всех значений х являются описываемыми предложениями.

III. Указание формального закона, по которому образованы эти предложения. В этом случае члены выражения, заключенного в скобки, суть все члены формального ряда.

5.502. Я, следовательно, пишу вместо " (- — И) (x…)", N(x)".

N(x) есть отрицание всех значений пропозициональной переменной.

5.503. Так как, очевидно, легко выразить, как посредством этой операции могут образовываться предложения и как посредством ее они не должны образовываться, то поэтому данное обстоятельство также должно допускать точное выражение.

5.51. Если x имеет только одно значение, то N(x) = ~ р (не р), и если имеет два значения, то N(x) = ~ p. ~ q (ни р, ни q).

5.511. Как может всеобъемлющая, отражающая мир логика употреблять такие специальные трюки и манипуляции? Только связывая все это в бесконечно тонкую сеть, в огромное зеркало.

5.512. "~ р" истинно, если "p" ложно. Следовательно, в истинном предложении "~ р" "р" есть ложное предложение. Как может теперь штрих "~" привести его в соответствие с действительностью?

Но то, что отрицает в "~ р", есть, однако, не "~", но то, что является общим для всех знаков этого способа записи, отрицающих р.

Отсюда общее правило, по которому образуются "~ р", "~ ~ ~ р", "~ р V ~ p", "~ p ~ p" и т. д. (до бесконечности). И это общее вновь отражает отрицание.

5.513. Можно было бы сказать: общее всех символов, которые утверждают как р, так и q, есть предложение "pVq". Общее всех символов, которые утверждают или р, или q, есть предложение "рVq".

Итак, можно сказать: два предложения друг другу противоречат, когда они не имеют ничего общего друг с другом; и каждое предложение имеет только одно отрицание, так как имеется только одно предложение, которое полностью лежит вне его.

Таким же образом в расселовском способе записи обнаруживается, что "q: pV~ p" говорит то же самое, что и "q"; что "р V ~ p" ничего не говорит.

5.514. Если установлен способ записи, то в нем имеется правило, по которому образуются все предложения, отрицающие р, правило, по которому образуются все предложения, утверждающие р, правило, по которому образуются все предложения, утверждающие р или q, и т. д.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия."

Книги похожие на "Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Елена Середкина

Елена Середкина - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Елена Середкина - Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия."

Отзывы читателей о книге "Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.