» » » » Елена Середкина - Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия.


Авторские права

Елена Середкина - Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия.

Здесь можно скачать бесплатно "Елена Середкина - Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия." в формате fb2, epub, txt, doc, pdf. Жанр: Философия, издательство Пермский Государственный Технический Университет, год 2009. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия.
Издательство:
Пермский Государственный Технический Университет
Жанр:
Год:
2009
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия."

Описание и краткое содержание "Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия." читать бесплатно онлайн.



Приведены отрывки из работ философов и историков науки XX века, в которых отражены основные проблемы методологии и истории науки. Предназначено для аспирантов, соискателей и магистров, изучающих историю, философию и методологию науки.






Такие выражения, как "1 есть число", "есть только один нуль", и все им подобные бессмысленны.

(Говорить "есть только одна единица" так же бессмысленно, как было бы бессмысленно сказать: 2 + 2 в 3 часа равно 4.)

4.12721. Формальное понятие уже дано с объектом, который подводится под него. Следовательно, нельзя вводить объекты формального понятия и само формальное понятие как исходные понятия. Следовательно, нельзя вводить в качестве исходных понятий, например, понятие функции и одновременно конкретные функции (как делал Рассел) или понятие числа и одновременно определенные числа.

4.1273. Если мы хотим выразить в логической символике общее предложение "b следует за а", то для этого мы употребляем выражение для общего члена формального ряда:

aRb,

($x): aRx.xRb,

($x, у): aRx xRy yRb,

Общий член формального ряда можно выразить только переменной, так как понятие: "член этого формального ряда" является формальным понятием. (Это просмотрели Фреге и Рассел; способ, каким они хотели выразить общие предложения, такие, как, например, вышеприведенные, был поэтому ложным; он содержал circulus vitiosus (порочный круг).

Мы можем определить общий член формального ряда, давая его первый член и общую форму операции, которая образует последующий член из предыдущего предложения.

4.1274. Вопрос о существовании формального понятия бессмыслен. Потому что ни одно предложение не может ответить на такой вопрос. Например, нельзя спрашивать:

"Есть ли неанализируемые" субъектно-предикатные предложения?

4.128. Логические формы нечисленны.

Поэтому в логике нет каких-либо привилегированных чисел и поэтому нет никакого философского монизма или дуализма и т. д.

4.2. Смысл предложения есть его согласование или несогласование с возможностями существования и несуществования атомарных фактов.

4.21. Простейшее предложение, элементарное предложение, утверждает существование атомарного факта.

4.211. Признаком элементарного предложения является то, что ни одно элементарное предложение не может ему противоречить.

4.22. Элементарное предложение состоит из имен. Оно есть связь, сцепление имен.

4.221. Очевидно, что при анализе предложений мы должны доходить до элементарных предложений, которые состоят из непосредственной связи имен. Здесь встает вопрос: как возникает пропозициональная связь?

4.2211. Даже если мир бесконечно сложен, так что каждый факт состоит из бесконечного числа атомарных фактов и каждый атомарный факт из бесконечного числа объектов, — даже тогда должны быть даны объекты и атомарные факты.

4.23. Имя выступает в предложении только в контексте элементарного предложения.

4.24. Имена суть простые символы; я обозначаю их отдельными буквами ("x", "y", "z"). Элементарное предложение я пишу как функцию имен в форме "fx", "Ф (х, у)" и т. д. Или я обозначаю его буквами р, q, r.

4.241. Если я употребляю два знака с одним и тем же значением, то я выражаю это, ставя между ними знак "=".

Следовательно, "а == b" означает: знак "а" заменим знаком "b". (Если я ввожу с помощью уравнения некоторый новый знак, определяя, что он должен заменить первоначальный известный знак "а", то я пишу уравнение-определение — (как Рассел) в форме "а =b Def.". Определение есть символическое правило.)

4.242. Следовательно, выражения формы "а = b" являются только средством изображения; они ничего не говорят о значениях знаков "а", "b".

4.243. Можем ли мы понять два имени, не зная, обозначают ли они одну и ту же вещь или две различные вещи?

Можем ли мы понять предложение, в которое входят эти два имени, не зная, обозначают ли они одну и ту же или различные вещи?

Если я, например, знаю значение английского и значение синонимичного ему немецкого слова, то я не смогу не знать, что они синонимы; невозможно, чтобы я не мог перевести их одно в другое.

Выражение вида а == с или выведенные из них не являются ни элементарными предложениями, ни другими осмысленными знаками. (Это будет показано ниже.)

4.25. Если элементарное предложение истинно, то атомарный факт существует; если элементарное предложение ложно, то атомарный факт не существует.

4.26. Указание всех истинных элементарных предложений полностью описывает мир. Мир полностью описывается указанием всех элементарных предложений вместе с указанием того, какие из них истинны, а какие ложны.

4.27. Относительно существования и несуществования атомарных фактов имеется возможностей.

Могут существовать все комбинации атомарных фактов, и, кроме них, другие комбинации существовать не могут.

4.28. Этим комбинациям соответствует такое же число возможностей истинности и ложности элементарных предложений.

4.3. Возможности истинности элементарных предложений означают возможности существования и несуществования атомарных фактов.

4.31. Возможности истинности можно изобразить схемами следующего вида ("И" означает "истинно", "Л" — "ложно". Строчки значений "И" и "Л" под строчками элементарных предложений означают в легко понимаемой символике их возможности истинности).

4.4. Предложение есть выражение согласования и несогласования с возможностями истинности элементарных предложений.

4.41. Возможности истинности элементарных предложений есть условия истинности и ложности предложений.

4.411. С первого же взгляда кажется вероятным, что введение элементарных предложений является основополагающим для понимания всех других видов предложения. Действительно, понимание общих предложений весьма ощутимо зависит от понимания элементарных предложений.

4.42. Относительно согласования и несогласования предложения с возможностями истинности элементарных предложений имеется возможностей.

4.43 Согласование возможностей истинности мы можем выразить, соотнося с ними на схеме знак "И".

Отсутствие этого знака означает несогласование.

4.431. Выражение согласования и несогласования с возможностями истинности элементарных предложений выражает условия истинности предложения.

Предложение есть выражение своих условий истинности.

(Фреге поэтому совершенно правильно помещал их вначале, как объяснение знаков своей логической символики. Только его объяснение понятия истинности ложно: если бы "истинное" и "ложное" были действительно объектами и аргументами в выражениях ~р и т. д., тогда смысл ~р отнюдь еще не устанавливался бы определением Фреге.).

4.44. Знак, возникающий из соотнесения знака "Я" с возможностями истинности, есть пропозициональный знак.

4.441. Ясно, что комплексу знаков "Л" и "И" не соответствует никакой объект (или комплекс объектов); не более чем горизонтальными вертикальным линиям или скобкам соответствуют какие-либо объекты. Не существует "логических объектов". Аналогично, конечно, и для всех знаков, выражающих то же самое, что и схемы "И" и "Л".

4.442. Так, например:

("Знак утверждения" Фреге "/-" логически полностью бессмыслен; он только указывает у Фреге (и у Рассела), что эти авторы считают отмеченные им предложения истинными. Поэтому "/-" является частью соединения предложений не более, чем, например, номер предложения. Предложение не может утверждать о самом себе, что оно истинно.)

Если последовательность возможностей истинности в схеме устанавливается правилом комбинации раз и навсегда, тогда уже одна последняя колонка является выражением условий истинности. Если мы напишем эту колонку в строчку, то пропозициональный знак будет:

"(ИИ-И} (р, q)" или еще яснее: "(ИИЛИ) (р, q)".

(Количество мест в левых скобках определяется количеством членов в правых.)

4.45. Для "n" элементарных предложений имеется Ln возможных групп условий истинности.

Группы условий истинности, принадлежащие к возможностям истинности некоторого числа элементарных предложений, могут упорядочиваться в ряд.

4.46. Среди возможных групп условий истинности имеется два предельных случая.

В первом случае предложение истинно для всех возможностей истинности элементарного предложения. Мы говорим, что условия истинности тавтологичны.

Во втором случае предложение ложно для всех возможностей истинности. Условия истинности противоречивы.

В первом случае мы называем предложение тавтологией, во втором — противоречием.

4.461. Предложение показывает то, что оно говорит, тавтология и противоречие показывают, что они ничего не говорят.

Тавтология не имеет условий истинности, потому что она безусловно истинна; а противоречие ни при каких условиях не истинно.

Тавтология и противоречие не имеют смысла. (Как точка, из которой две стрелки расходятся в противоположных направлениях.)

(Я не знаю, например, ничего о погоде, если я знаю, что дождь идет или что дождь не идет.)

4.4611. Но тавтология и противоречие не являются бессмысленными, они являются частью символизма, подобно тому как "О" есть часть символизма арифметики.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия."

Книги похожие на "Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Елена Середкина

Елена Середкина - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Елена Середкина - Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия."

Отзывы читателей о книге "Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.