В Ирхин - Крылья Феникса; Введение в квантовую мифофизику
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Крылья Феникса; Введение в квантовую мифофизику"
Описание и краткое содержание "Крылья Феникса; Введение в квантовую мифофизику" читать бесплатно онлайн.
Продолжение соображений Эйнштейна.
В. Макроскопическое тело при объективном описании всегда будет иметь квазирезко определенное местоположение...
Так вот, я не согласен с эйнштейновским соображением В (обратите внимание: понятие детерминизм здесь вообще не фигурирует). Я не считаю правдоподобной возможность того, чтобы макротело имело всегда квазирезко определенное местоположение, поскольку не вижу принципиальной разницы между микро- и макротелами. По-моему, всегда в значительной степени надо считаться с неопределенностью положения там, где в принципе проявляется волновая природа соответствующего объекта.
(В. Паули, из письма М. Борну 31.3.54, Эйнштейновский сборник 1972. М., 1974)
Соображение В -- это гипотеза о неприменимости принципа суперпозиции для достаточно больших (классических) тел. Для таких тел, согласно Эйнштейну (и согласно повседневному опыту!), возможны только состояния с исчезающе малой неопределенностью координаты. Паули обращает внимание на несовместимость этого положения с квантовой механикой: если возможны два состояния со сколь угодно точно определенными положениями, разнесенными, скажем, на один метр, то возможна и суперпозиция этих состояний с равными весами (грубо говоря, сумма состояний справа и слева). В таком состоянии неопределенность координаты будет равна этому самому метру, и нет никаких формальных причин запретить появление таких состояний. Подчеркнем еще раз, что речь идет о принципе суперпозиции -- самом фундаментальном законе квантовой механики. В уравнении Шредингера не заложено никакого ограничения на его применимость только к электрону, но, скажем, не к футбольному мячу. В то же время для футбольного мяча подобные существенно квантовые состояния никогда не наблюдались. Проблема шредингеровской кошки, собственно, в том и состоит, чтобы объяснить -- почему.
Классические объекты существуют эмпирически достоверно. Они даже не должны быть макроскопически большими: скажем, в отношении оптической активности та же молекула сахара должна уже рассматриваться как классический объект, так как ее туннелирование из правой формы в левую и обратно полностью подавлено. Таким образом, мы приходим к главному вопросу: откуда в квантовом мире берутся классические объекты? Что обеспечивает достоверность некоторых (в действительности очень многих!) утверждений об окружающем нас мире? Вопрос этот является весьма сложным (и, безусловно, очень важным!). Здесь мы изложим вариант ответа, который в настоящее время представляется наиболее правдоподобным большинству физиков, занимающихся квантовой механикой (в том числе и авторам).
Наиболее распространенное решение парадокса кошки состоит в следующем. Если мы рассматриваем строго изолированную от внешнего мира систему, то никакой ошибки в рассуждении Шредингера нет. Все изолированные системы, независимо от их размеров, массы и т. д., являются квантовыми и строго подчиняются принципу суперпозиции. Чтобы разобраться в предельном переходе от микрообъектов к макрообъектам, мы должны несколько изменить постановку задачи и рассмотреть открытые системы, взаимодействующие с окружением. Такая задача была впервые поставлена в четкой математической форме Р. Фейнманом в 1963 году. В результате ее тщательного исследования (важную роль здесь сыграли работы В. Журека, Г. Цеха, А. Леггетта и многих других физиков) оказалось, что взаимодействие с окружением разрушает квантовую интерференцию, превращая тем самым квантовую систему в классическую, причем тем быстрее, чем больше масса системы. Для такого объекта как кошка (или даже молекула сахарозы -- но не аммиака!) достаточно уже очень слабой неизолированности, чтобы полностью разрушить квантовые эффекты. Разрушение квантовой интерференции в случае кошки достигается, например, за счет рассеяния на кошке атомов и молекул, входящих в состав воздуха, которым она дышит. Даже частички космической пыли в межгалактическом пространстве нельзя считать квантовыми объектами из-за их взаимодействия с так называемым реликтовым излучением, заполняющим, по современным представлениям, всю Вселенную. Таким образом, классические системы, в том числе измерительные приборы, существуют потому, что они взаимодействуют с окружающим миром. Подробно эти вопросы рассмотрены в недавней книге: D. Giulini, E. Joos, C. Kieper, J. Kupsch, I.-O. Stamatescu, H. D. Zeh. Decoherence and the appearance of a classical world in quantum theory (Berlin, Springer, 1996), рассчитанной, однако, на подготовленного в области физики и математики читателя.
Важно при этом, что некоторые состояния оказываются наиболее устойчивыми по отношению к возмущениям, вносимым окружением. Только такие состояния и реализуются в макромире (они получили название pointer states). В. Журек (W. Zurek) показал, что подобной повышенной устойчивостью обладают так называемые когерентные состояния, в которых неопределенности координаты и скорости частицы минимальны. Согласно высказанной им гипотезе, для квантовой системы, взаимодействующей с окружением, начальное квантовое состояние общего вида разваливается на pointer states. При этом суперпозиции pointer states, вообще говоря, таковыми состояниями не являются. В этом смысле принцип суперпозиции действительно нарушается для открытых, то есть взаимодействующих с окружением, квантовых систем. Именно поэтому в макромире оказывается возможным говорить об определенных значениях координаты и скорости объектов. Отметим, впрочем, что в этой картине еще много неясностей, и математически строгие доказательства ключевых утверждений отсутствуют.
ГЛАВА 12.
Парадокс ЭПР и нелокальность квантового мира
Если в четырех углах великого океана четырем людям случится взять воды, вся эта вода, что они возьмут, будет иметь один и тот же вкус, вкус соленый.
(Сутра запредельной мудрости в 700 строк)
Прежде чем перейти к обсуждению парадокса ЭПР, необходимо сделать некоторые пояснения. Мы будем рассматривать здесь не оригинальную формулировку парадокса, обсуждаемую в статье Эйнштейна, Подольского и Розена 1935 года, а более наглядный вариант, предложенный впоследствии Д. Бомом. Большинство микрочастиц (далее для определенности будем иметь в виду электрон) в определенном смысле подобны волчку, то есть обладают внутренним моментом количества движения -- спином, при этом, как и в классическом случае, справедлив закон сохранения полного момента количества движения для изолированной системы. Однако специфика квантовой механики проявляется и здесь. Оказывается, что невозможно одновременно измерить проекции спина на три взаимно перпендикулярные оси и тем самым определить его точное направление в пространстве (причины здесь такие же, что и при одновременном измерении координаты и скорости электрона). Можно измерить проекцию на любую ось, но при этом она может принимать только два значения -- вверх или вниз (точнее, +1/2 и 1/2 в единицах постоянной Планка). В этом отношении экспериментальные установки, измеряющие проекции вдоль оси z (вверх -- вниз) и вдоль оси x (вправо -- влево), являются дополнительными в смысле Бора. Предположим, что мы провели измерение проекции спина электрона на ось z и обнаружили, что она равна +1/2. При этом проекция спина по оси x оказывается полностью неопределенной, то есть ее последующее измерение с равной вероятностью 50% даст результаты +1/2 и 1/2.
Теперь перейдем к изложению самого парадокса. Пусть мы имеем в начальном состоянии два электрона с суммарным спином, равным нулю (это означает, что равна нулю проекция на любую ось). Такое состояние действительно можно приготовить (экспериментально удобнее иметь дело не с электронами, а со световыми квантами -- фотонами, но суть дела при этом не меняется). Пусть затем эти электроны разлетелись достаточно далеко, и их заведомо можно считать невзаимодействующими. Измерим проекцию спина первого электрона на ось z; пусть она оказалась равной +1/2. Тогда, в силу закона сохранения полного момента количества движения, второй электрон находится в состоянии с проекцией спина на ось z, равной 1/2. Мы можем измерить его проекцию спина на ось x, получив результат +1/2 или 1/2. Для определенности предположим второе. Тогда в момент измерения состояние первого электрона скачком изменилось: из состояния с проекцией спина +1/2 вдоль оси z он перешел в состояние с проекцией спина +1/2 вдоль оси x. Таким образом, мы изменили состояние первого электрона, вообще не оказывая на него воздействия! Это скорее напоминает магические процедуры (типа воздействия на человека посредством манипуляций с его изображением), чем результат физического эксперимента. Суть дела заключается в перепутывании (entanglement) степеней свободы электронов в начальном состоянии, которое приводит к появлению в системе особого рода дальнодействующих корреляций.
Тем самым квантовый мир оказывается существенно нелокальным. Как обычно, тайны, труднопостижимые для ученых, разглашаются поэтами:
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Крылья Феникса; Введение в квантовую мифофизику"
Книги похожие на "Крылья Феникса; Введение в квантовую мифофизику" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "В Ирхин - Крылья Феникса; Введение в квантовую мифофизику"
Отзывы читателей о книге "Крылья Феникса; Введение в квантовую мифофизику", комментарии и мнения людей о произведении.