Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"
Описание и краткое содержание "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" читать бесплатно онлайн.
Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.
Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.
Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.
Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.
Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.
Рис. 145. Дальнейшее сокращение рис. 143.
Парадокс картины выражен здесь в крайней форме. Но если картина «включена в саму себя», то молодой человек тоже включен сам в себя? На этот вопрос отвечает рис. 146.
Рис. 146. Другой способ сокращения рис. 143.
Здесь мы видим молодого человека «внутри самого себя», в том смысле, какой получается от соединения трех аспектов «внутренности». Эта диаграмма напоминает нам о парадоксе Эпименида с его одноступенчатой автореференцией, в то время как двухступенчатая диаграмма похожа на пару утверждений, каждое из которых ссылается на другое. Затянуть Петлю туже не удается, но можно ее ослабить, вводя любое количество промежуточных уровней, таких как «рама картины», «аркада» и «здание». Сделав так, мы получим многоступенчатые Странные Петли, диаграммы которых изоморфны «Водопаду» (рис. 5) или «Спуску и подъему» (рис. 6) Количество ступеней определяется нашим чувством того, что «естественно», что может варьироваться в зависимости от контекста, цели, или нашего настроения. В конечном итоге, восприятие уровней — это вопрос интуиции и художественного вкуса.
Оказываются ли зрители, глядящие на «Картинную галерею,» затянутыми «в самих себя»? На самом деле, этого не происходит. Нам удается избежать этого водоворота благодаря тому, что мы находимся вне системы. Глядя на картину, мы видим то, что незаметно молодому человеку, — например, подпись Эшера «МСЕ» в центральном «слепом пятне». Хотя это пятно кажется дефектом, скорее всего, дефект заключается в наших ожиданиях, поскольку Эшер не мог бы закончить этот фрагмент картины без того, чтобы не вступить в противоречие с правилами, по которым он ее создавал. Центр водоворота остается — и должен оставаться — неполным. Эшер мог бы сделать его сколь угодно малым, но избавиться от него совсем он не мог. Таким образом мы, глядя снаружи, видим, что «Картинная галерея» неполна, чего молодой человек на картине заметить не в состоянии. Здесь Эшер дал художественную метафору Теоремы Геделя о неполноте. Поэтому Эшер и Гёдель так тесно переплетены в моей книге.
Водоворот Баха, где скрещиваются все уровниГлядя на диаграммы Странных Петель, мы не можем не вспомнить о Естественно Растущем Каноне из «Музыкального приношения». Его диаграмма состояла бы из шести ступеней, как показано на рис. 147. К сожалению, когда канон возвращается к до, он оказывается на октаву выше, чем в начале.
Рис. 147. Схема гексагональной модуляции Баховского Естественно Растущего Канона выглядит как настоящая Странная Петля, если использовать тональную систему Шепарда.
Однако возможно сделать так, что Канон вернется точно к началу, если использовать так называемую тональную систему Шепарда, названную в честь ее автора, психолога Роджера Шепарда. Принцип тонов Шепарда показан на рис. 148. Он заключается в том что параллельные гаммы играются в нескольких различных октавах. Каждая нота имеет собственную независимую интенсивность, по мере того, как мелодия становится выше эта интенсивность меняется. Таким образом вы добиваетесь того что высшая октава постепенно переходит в низшую. Как раз в тот момент, когда вы ожидаете оказаться на октаву выше, интенсивности изменились так, что вы оказываетесь в точности там же, где начали. Так можно «бесконечно подниматься», никогда не оказываясь выше! Можете попробовать сыграть это на пианино. Еще лучше получается, когда тона точно воспроизводятся с помощью компьютера. При этом достигается удивительно полная иллюзия.
Это замечательное музыкальное открытие позволяет сыграть Естественно Растущий Канон так что, «поднявшись» на октаву, он сливается сам с собой. Эта идея, принадлежащая мне и Скотту Киму, была приведена в исполнение с помощью компьютерной музыкальной системы и результат был записан на магнитофон. Получившийся эффект едва различим, но вполне реален. Интересно то, что сам Бах, по-видимому, в некотором роде осознавал возможность подобных гамм, поскольку в его музыке можно найти пассажи разрабатывающие приблизительно такую же идею — например в середине «Фантазии из органной „Фантазии и фуги в соль миноре“».
Ханс Теодор Давид своей книге «„Музыкальное приношение“ И. С. Баха» (Hans Theodore David «J.S. Bach's „Musical Offering“») пишет:
На всем протяжении Музыкального приношения читатель, исполнитель или слушатель должен искать Королевскую тему во всех ее формах. Таким образом все это произведение — ricercar в первоначальном буквальном смысле слова.[91]
Я думаю, что это верно, — мы никогда не можем достаточно глубоко заглянуть в «Музыкальное приношение». Когда мы думаем, что поняли его полностью, мы обнаруживаем в нем нечто новое. Например, в конце того самого «Шестиголосного ричеркара», который Бах отказался импровизировать, он искусно запрятал собственное имя, разделенное между двумя верхними голосами. В «Музыкальном приношении» множество уровней, там можно найти игру с нотами и буквами, хитроумные вариации на Королевскую тему, оригинальные типы канонов, удивительно сложные фуги, красоту и крайнюю глубину чувства, в нем даже присутствует наслаждение многоуровневостью произведения. «Музыкальное приношение» — это фуга фуг, Запутанная Иерархия, подобная Запутанным Иерархиям Эшера и Геделя интеллектуальная конструкция, напоминающая мне о прекрасной многоголосной фуге человеческого разума. Именно поэтому Гедель, Эшер и Бах сплетены в моей книге в эту Бесконечную Гирлянду.
Рис. 148. Два полных цикла тональных гамм Шепарда в нотации для рояля. Громкость каждой ноты пропорциональна её местонахождению: в тот момент, когда верхний голос сходит на нет, очень тихо вступает новый нижний голос. (Напечатано с помощью программы Дональда Бирна «СМУТ»).
Шестиголосный Ричеркар
Ахилл пришел со своей виолончелью в гости к Крабу, чтобы принять участие в вечере камерной музыки с Крабом и Черепахой. Проводив Ахилла в музыкальную комнату, Краб на минуту отлучился, чтобы открыть дверь их общему другу, Черепахе Тортилле. Комната полна всяческого электронного оборудования: патефоны, целые и разобранные, телевизионные экраны, подключенные к пишущим машинкам, и другие приспособления и аппараты весьма странного вида. Среди всех этих хитроумных устройств стоит обыкновенный телевизор. Поскольку это единственная вещь в комнате, которой Ахилл умеет пользоваться, он крадучись подходит к телевизору и, воровато оглянувшись на дверь, начинает нажимать на кнопки. Вскоре он находит программу, где шесть ученых обсуждают свободу воли и детерминизм. Он смотрит пару минут и затем, презрительно усмехнувшись, выключает телевизор.
Ахилл: Я вполне могу обойтись без такой программы. В конце концов, всякому, кто когда-либо об этом думал, ясно… Я имею в виду, что это совсем нетрудный вопрос, как только вы понимаете, как его разрешить… Скорее, концептуально это все можно разъяснить, если иметь в виду, что… или, по крайней мере, представляя себе ситуацию, в которой… Гммм… Я-то думал, что мне все это вполне ясно. Пожалуй, эта передача все же могла бы оказаться полезной.
(Входит Черепаха со скрипкой.)
А вот и наша скрипачка! Усердно ли вы занимались на этой неделе, г-жа Ч? Я играл по меньшей мере два часа в день — разучивал партию виолончели в «Трио-сонате» из «Музыкального приношения» Баха. Это суровый режим, но он приносит плоды: как у нас, воинов, говорится: трудно в учении — легко в бою!
Черепаха: Я вполне могу обойтись без такой программы. Несколько минут упражнений в свободное время — это все, что мне нужно, чтобы быть в форме!
Ахилл: Везет же некоторым! Хотел бы я, чтобы музыка давалась мне так же легко… Но где же сам хозяин?
Черепаха: Наверное, пошел за флейтой. А вот и он!
(Входит Краб с флейтой.)
Ахилл: Знаете, м-р Краб, когда я на прошлой неделе так ревностно разучивал «Трио-сонату», у меня в голове всплывали самые странные картины: весело жующие шмели, меланхолически жужжащие коровы и масса всяких других зверей. Не правда ли, какая могучая сила заключена в музыке?
Краб: Я вполне могу обойтись без такой программы. На мой взгляд, нет музыки серьезнее, чем «Музыкальное приношение».
Черепаха: Вы, наверное, шутите, Ахилл? «Музыкальное приношение» — вовсе не программная музыка!
Ахилл: Просто я люблю животных, что бы вы, консерваторы, не говорили.
Краб: Не думаю, что мы такие уж консерваторы — разве что вы имеете в виду страсть г-жи Ч к домашнему консервированию… Мы хотели сказать лишь то, что у вас особое восприятие музыки.
Черепаха: Как насчет того, чтобы начать играть?
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"
Книги похожие на "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"
Отзывы читателей о книге "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда", комментарии и мнения людей о произведении.