Е. Миркес - Учебное пособие по курсу «Нейроинформатика»
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Учебное пособие по курсу «Нейроинформатика»"
Описание и краткое содержание "Учебное пособие по курсу «Нейроинформатика»" читать бесплатно онлайн.
Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.
Несколько слов о структуре пособия. Далее во введении приведены учебный план по данному курсу, задания на лабораторные работы. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (Clab и Нейроучебник), и проект стандарта нейрокомпьютера, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.
Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.
В случае n=10, k=1 (см. табл. 3 и 4, строка 1) при валентностях 3 и 5 тензорная сеть работала как единичный оператор — все входные вектора передавались на выход сети без изменений. Однако уже при валентности 7 число химер резко сократилось и сеть правильно декодировала более 60% сигналов. При этом были правильно декодированы все векторы, удаленные от ближайшего эталона на расстояние 2, а часть векторов, удаленных от ближайшего эталона на расстояние 1, остались химерами. В случае n=10, k=2 (см. табл. 3 и 4, строки 3, 4, 5) наблюдалось уменьшение числа химер с ростом валентности, однако часть химер, удаленных от ближайшего эталона на расстояние 2 сохранялась. Сеть правильно декодировала более 50% сигналов. Таким образом при малых размерностях и кодах, далеких от совершенных, тензорная сеть работает довольно плохо. Однако, уже при n=15, k=3 и валентности, большей 3 (см. табл. 3 и 4, строки 6, 7), сеть правильно декодировала все сигналы с тремя ошибками. В большинстве экспериментов число эталонов было больше числа нейронов.
Таблица 4. Результаты численного эксперимента
№ Число химер, удаленных от ближайшего эталона на: Число неверно распознанных векторов, удаленных от ближайшего эталона на: 1 2 3 4 5 1 2 3 4 5 1 640 256 0 0 0 896 0 0 0 0 2 384 0 0 0 0 384 0 0 0 0 3 0 210 50 0 0 0 210 290 60 0 4 0 180 50 0 0 0 180 290 60 0 5 0 88 50 2 0 0 156 290 60 0 6 0 0 1120 13440 896 0 0 1120 13440 896 7 0 0 0 13440 896 0 0 0 13440 896
Подводя итог можно сказать, что качество работы сети возрастает с ростом размерности пространства и валентности и по эффективности устранения ошибок сеть приближается к коду, гарантированно исправляющему ошибки.
Доказательство теоремы
В данном разделе приведено доказательство теоремы о числе линейно независимых образов в пространстве k-х тензорных степеней эталонов.
При построении тензорных сетей используются тензоры валентности k следующего вида:
(13)
где aj — n-мерные вектора над полем действительных чисел.
Если все вектора ai=a, то будем говорить о k-й тензорной степени вектора a, и использовать обозначение a⊗k. Для дальнейшего важны следующие элементарные свойства тензоров вида (13).
1. Пусть и , тогда скалярное произведение этих векторов может быть вычислено по формуле
(14)
Доказательство этого свойства следует непосредственно из свойств тензоров общего вида.
2. Если в условиях свойства 1 вектора являются тензорными степенями, то скалярное произведение имеет вид:
(15)
Доказательство непосредственно вытекает из свойства 1.
3. Если вектора a и b ортогональны, то есть (a,b) = 0, то и их тензорные степени любой положительной валентности ортогональны.
Доказательство вытекает из свойства 2.
4. Если вектора a и b коллинеарны, то есть b = λa, то a⊗k=λka⊗k.
Следствие. Если множество векторов содержит хотя бы одну пару противоположно направленных векторов, то система векторов будет линейно зависимой при любой валентности k.
5. Применение к множеству векторов невырожденного линейного преобразования B в пространстве Rn эквивалентно применению к множеству векторов линейного невырожденного преобразования, индуцированного преобразованием B, в пространстве .
Сюръективным мультииндексом α(L) над конечным множеством L назовем k-мерный вектор, обладающий следующими свойствами:
1. для любого iL существует j∈{1, …, k} такое, что αj=i;
2. для любого j∈{1, …, k} существует i∈L такое, что αj=i.
Обозначим через d(α(L),i) число компонент сюръективного мультииндекса α(L) равных i, через |L| — число элементов множества L, а через Α(L) — множество всех сюръективных мультииндексов над множеством L.
Предложение 1. Если вектор a представлен в виде , где βi — произвольные действительные коэффициенты, то верно следующее равенство
(16)
Доказательство предложения получается возведением в тензорную степень k и раскрытием скобок с учетом линейности операции тензорного умножения.
В множестве , выберем множество X следующим образом: возьмем все (n-1)-мерные вектора с координатами ±1, а в качестве n-й координаты во всех векторах возьмем единицу.
Предложение 2. Множество x является максимальным множеством n-мерных векторов с координатами равными ±1 и не содержит пар противоположно направленных векторов.
Доказательство. Из равенства единице последней координаты всех векторов множества X следует отсутствие пар противоположно направленных векторов. Пусть x — вектор с координатами ±1, не входящий в множество X, следовательно последняя координата вектора x равна минус единице. Так как в множество X включались все (n-1) — мерные вектора с координатами ±1, то среди них найдется вектор, первые n-1 координата которого равны соответствующим координатам вектора x со знаком минус. Поскольку последние координаты также имеют противоположные знаки, то в множестве X нашелся вектор противоположно направленный по отношению к вектору x. Таким образом множество X максимально.
Таким образом в множестве X содержится ровно 2n-1 вектор. Каждый вектор x∈X можно представить в виде , где I⊂{1, …, n-1}. Для нумерации векторов множества X будем использовать мультииндекс I. Обозначим через |I| число элементов в мультииндексе I. Используя введенные обозначения можно разбить множество X на n непересекающихся подмножеств: Pi = {xI, |I|=i}, .
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Учебное пособие по курсу «Нейроинформатика»"
Книги похожие на "Учебное пособие по курсу «Нейроинформатика»" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Е. Миркес - Учебное пособие по курсу «Нейроинформатика»"
Отзывы читателей о книге "Учебное пособие по курсу «Нейроинформатика»", комментарии и мнения людей о произведении.