» » » Е. Миркес - Учебное пособие по курсу «Нейроинформатика»


Авторские права

Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

Здесь можно скачать бесплатно "Е. Миркес - Учебное пособие по курсу «Нейроинформатика»" в формате fb2, epub, txt, doc, pdf. Жанр: Программирование, издательство КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ, год 2002. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Учебное пособие по курсу «Нейроинформатика»
Автор:
Издательство:
КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
Год:
2002
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Учебное пособие по курсу «Нейроинформатика»"

Описание и краткое содержание "Учебное пособие по курсу «Нейроинформатика»" читать бесплатно онлайн.



Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.

Несколько слов о структуре пособия. Далее во введении приведены учебный план по данному курсу, задания на лабораторные работы. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (Clab и Нейроучебник), и проект стандарта нейрокомпьютера, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.

Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.






Таблица 2. Степени коррелированности эталонов, приведенных на рис. 1, для различных тензорных степеней.

Тензорная степень Степень коррелированности Условия CAB CAC CBC CAB+CAC CAB+CBC CAC+CBC 1 0.74 0.72 0.86 1.46 1.60 1.58 2 0.55 0.52 0.74 1.07 1.29 1.26 3 0.41 0.37 0.64 0.78 1.05 1.01 4 0.30 0.26 0.55 0.56 0.85 0.81 5 0.22 0.19 0.47 0.41 0.69 0.66 6 0.16 0.14 0.40 0.30 0.56 0.54 7 0.12 0.10 0.35 0.22 0.47 0.45 8 0.09 0.07 0.30 0.16 0.39 0.37

Анализ данных, приведенных в табл. 2, показывает, что при тензорных степенях 1, 2 и 3 степень коррелированности эталонов не удовлетворяет первому из достаточных условий (), а при степенях меньше 8 — второму ().

Таким образом, чем выше тензорная степень сети (9), тем слабее становится ограничение на степень коррелированности эталонов. Сеть (10) не чувствительна к степени коррелированности эталонов.

Сети для инвариантной обработки изображений

Для того, чтобы при обработке переводить визуальные образов, отличающиеся только положением в рамке изображения, в один эталон, применяется следующий прием [91]. Преобразуем исходное изображение в некоторый вектор величин, не изменяющихся при сдвиге (вектор инвариантов). Простейший набор инвариантов дают автокорреляторы — скалярные произведения образа на сдвинутый образ, рассматриваемые как функции вектора сдвига.

В качестве примера рассмотрим вычисление сдвигового автокоррелятора для черно-белых изображений. Пусть дан двумерный образ S размером p×q=n. Обозначим точки образа как sij. Элементами автокоррелятора Ac(S) будут величины , где sij=0 при выполнении любого из неравенств i < 1, i > p, j < 1, j > q. Легко проверить, что автокорреляторы любых двух образов, отличающихся только расположением в рамке, совпадают. Отметим, что aij=a-i,-j при всех i,j, и aij=0 при выполнении любого из неравенств i < 1-p, i > p-1, j < 1-qj > q-1. Таким образом, можно считать, что размер автокоррелятора равен p×(2q+1).

Автокорреляторная сеть имеет вид

(11)

Сеть (11) позволяет обрабатывать различные визуальные образы, отличающиеся только положением в рамке, как один образ.

Конструирование сетей под задачу

Подводя итоги, можно сказать, что все сети ассоциативной памяти типа (2) можно получить, комбинируя следующие преобразования:

1. Произвольное преобразование. Например, переход к автокорреляторам, позволяющий объединять в один выходной образ все образы, отличающиеся только положением в рамке.

2. Тензорное преобразование, позволяющее сильно увеличить способность сети запоминать и точно воспроизводить эталоны.

3. Переход к ортогональному проектору, снимающий зависимость надежности работы сети от степени коррелированности образов.

Наиболее сложная сеть будет иметь вид:

(12)

где rij-1 — элементы матрицы, обратной матрице Грама системы векторов {F(xi)}⊗k, F(x) — произвольное преобразование.

Возможно применение и других методов предобработки. Некоторые из них рассмотрены в работах [68, 91, 278]

Численный эксперимент

Работа ортогональных тензорных сетей при наличии помех сравнивалась с возможностями линейных кодов, исправляющих ошибки. Линейным кодом, исправляющим k ошибок, называется линейное подпространство в n-мерном пространстве над GF2, все вектора которого удалены друг от друга не менее чем на 2k+1. Линейный код называется совершенным, если для любого вектора n-мерного пространства существует кодовый вектор, удаленный от данного не более, чем на k. Тензорной сети в качестве эталонов подавались все кодовые векторы избранного для сравнения кода. Численные эксперименты с совершенными кодами показали, что тензорная сеть минимально необходимой валентности правильно декодирует все векторы. Для несовершенных кодов картина оказалась хуже — среди устойчивых образов тензорной сети появились «химеры» — векторы, не принадлежащие множеству эталонов.


Таблица 3. Результаты численного эксперимента. МР — минимальное расстояние между эталонами, ЧЭ — число эталонов

№ Размерность Число векторов МР ЧЭ Валентность Число химер Число ответов После обработки сетью расстояние до правильного ответа стало верн. неверн. меньше то же больше 1 10 1024 3 64 3,5 896 128 896 0 856 0 2 7,21 384 640 384 0 348 0 3 10 1024 5 8 3 260 464 560 240 260 60 4 5,15 230 494 530 240 230 60 5 17,21 140 532 492 240 182 70 6 15 32768 7 32 3 15456 17312 15456 0 15465 0 7 5,21 14336 18432 14336 0 14336 0

В случае n=10, k=1 (см. табл. 3 и 4, строка 1) при валентностях 3 и 5 тензорная сеть работала как единичный оператор — все входные вектора передавались на выход сети без изменений. Однако уже при валентности 7 число химер резко сократилось и сеть правильно декодировала более 60% сигналов. При этом были правильно декодированы все векторы, удаленные от ближайшего эталона на расстояние 2, а часть векторов, удаленных от ближайшего эталона на расстояние 1, остались химерами. В случае n=10, k=2 (см. табл. 3 и 4, строки 3, 4, 5) наблюдалось уменьшение числа химер с ростом валентности, однако часть химер, удаленных от ближайшего эталона на расстояние 2 сохранялась. Сеть правильно декодировала более 50% сигналов. Таким образом при малых размерностях и кодах, далеких от совершенных, тензорная сеть работает довольно плохо. Однако, уже при n=15, k=3 и валентности, большей 3 (см. табл. 3 и 4, строки 6, 7), сеть правильно декодировала все сигналы с тремя ошибками. В большинстве экспериментов число эталонов было больше числа нейронов.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Учебное пособие по курсу «Нейроинформатика»"

Книги похожие на "Учебное пособие по курсу «Нейроинформатика»" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Е. Миркес

Е. Миркес - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Е. Миркес - Учебное пособие по курсу «Нейроинформатика»"

Отзывы читателей о книге "Учебное пособие по курсу «Нейроинформатика»", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.