» » » » Сергей Гришин - Космическая технология и производство


Авторские права

Сергей Гришин - Космическая технология и производство

Здесь можно скачать бесплатно "Сергей Гришин - Космическая технология и производство" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Знание, год 1978. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Сергей Гришин - Космическая технология и производство
Рейтинг:
Название:
Космическая технология и производство
Издательство:
Знание
Год:
1978
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Космическая технология и производство"

Описание и краткое содержание "Космическая технология и производство" читать бесплатно онлайн.



В брошюре популярно излагаются физические основы космической технологии и рассматриваются перспективные направления космического производства — космическая металлургия, получение полупроводниковых материалов, стекла, биологически активных препаратов и т. д., — имеющие большое народнохозяйственное значение. Рассказывается о результатах экспериментов по космическому производству во время полетов советских космических кораблей «Союз» и орбитальных научных станций «Салют», а также на американских космических аппаратах.

Брошюра рассчитана на широкий круг читателей.






Совокупность этих вопросов исследовалась в экспериментах на станции «Скайлэб», а также в эксперименте с прибором «Сфера» на станции «Салют-5». В первом из этих экспериментов заготовки из чистого никеля или его сплавов плавились под действием электронного пучка, а затем охлаждались, свободно плавая в вакуумной камере на борту станции «Скайлэб». Наземные исследования полученных образцов показали, что отклонение их формы от сферической составляет около 1 %, а образцы, приготовленные из сплавов, содержат внутренние поры. Цель другого эксперимента состояла в получении в невесомости материалов с однородной пористостью путем переплава серебряных сеток. Таких материалов американским ученым получить не удалось, зато при переплавке в ампулах тонких серебряных сеток наблюдалась сфероидизация жидких капель серебра. Наземные исследования той части затвердевших капель, которые не имели при остывании контактов со стенками ампулы, показали, что их форма далека от совершенства. Поверхность образцов покрыта сеткой желобков, а в их объеме имеются усадочные раковины[5]. Внутренняя структура образцов носила ячеистый характер. Можно предполагать, что именно ячеистое затвердевание и образование раковин помешали образованию более правильных сфер в условиях, близких к невесомости.

С целью получения новой информации о процессах, сопровождающих бесконтейнерное затвердевание жидкого металла на станции «Салют-5», был поставлен эксперимент с прибором «Сфера». В качестве исследуемого вещества был выбран эвтектический сплав Вуда, обладающий минимальной температурой плавления (около 70 °C) и позволяющий поэтому свести к минимуму потребление электроэнергии (10 Вт). Химический состав исследованного сплава (по весу): висмут — 40, свинец — 40, кадмий — 10, олово — 10 %. Прибор «Сфера» представлял собой электрический нагреватель, внутри которого расплавлялась исследуемая заготовка массой 0,25 г, которая затем с помощью штока выталкивалась в лавсановый мешок. Внутри этого мешка отливка охлаждалась и затвердевала, не приходя в соприкосновение со стенками. Время, в течение которого заготовка, помещенная в нагреватель, разогревалась до температуры плавления, составляло на Земле 30 с. В невесомости контакт между заготовкой и стенками нагревателя должен ухудшаться, поэтому время разогрева образца было увеличено до 2 мин.

Доставленный после завершения экспериментов на Землю образец имел эллипсоидальную форму, а его поверхность была покрыта хаотически расположенными волокнами (по свидетельству космонавта В. М. Жолобова, образец имел вид ежа). Как показал анализ, внутренняя структура образца вследствие переплава в космосе также сильно изменилась: нарушилось равномерное распределение компонентов сплава по объему, образовались различающиеся по химическому составу иглообразные кристаллики и т. д. Вероятная причина этих изменений состоит, видимо, в особенностях теплового режима расплава при его затвердевании в условиях бесконтейнерного удержания. Попытки подобрать в лабораторных условиях такой тепловой режим обработки заготовки из сплава Вуда, который привел бы к сходной структуре отливки, не дали положительного результата, очевидно, потому что на Земле невозможно воспроизвести бесконтейнерное удержание образца.

Таким образом, выполненные к настоящему времени исследования в области физических основ космического производства, включая опыты, проведенные на различных космических аппаратах, подтвердили правильность общих представлений об особенностях физических процессов в невесомости и дали непосредственные экспериментальные доказательства возможности получения в космосе материалов с улучшенными характеристиками. Вместе с тем эксперименты показали недостаточность существующих количественных теорий этих процессов и выявили необходимость проведения специальных исследований, направленных на развитие теоретических основ производства в космосе новых материалов.

Космическая металлургия

Металлургия имеет дело с получением металлов и с процессами, сообщающими металлическим сплавам необходимые свойства путем изменения их состава и структуры. К металлургии относятся процессы очистки металлов от нежелательных примесей, производство металлов и сплавов, термическая обработка металлов, литье, нанесение покрытий на поверхность изделий и т. д. Большинство этих процессов включает с себя фазовые переходы к жидкому или газообразному состояниям, для которых влияние величины массовых сил на состав и структуру конечного материала может быть значительным. Поэтому перенос металлургических процессов в космос открывает принципиальные возможности производства материалов с улучшенными характеристиками, а также материалов, которые на Земле получить нельзя.

Металлургические процессы в космических условиях могут быть использованы для решения следующих задач.

1. Приготовление сплавов, в которых нет сегрегации[6], обусловленной силой Архимеда (получение композиционных материалов, сплавов высокой однородности и чистоты, пенометаллов).

2. Приготовление сплавов в отсутствие конвекционных токов (бездефектные монокристаллы, улучшенные эвтектики и магнитные материалы).

3. Безгравитационное литье (приготовление пленок, проволоки, литых изделий сложной формы).

4. Бестигельная плавка металлов и сплавов (очистка металлов и сплавов, их однородное затвердевание).

5. Разработка методов получения неразъемных соединений на космических аппаратах (сварка, пайка и т. д.).

Рассмотрим коротко состояние исследований, направленных на получение в космосе материалов металлургическими методами.

Бездефектные кристаллы и сплавы. Для производства сплавов исходные компоненты могут быть приготовлены как в жидкой, так и в газообразной (паровой) фазе с последующей кристаллизацией. В невесомости из-за отсутствия разделения фаз можно задавать произвольные комбинации компонентов в любых состояниях. Можно, в частности, получить прямой переход из паровой фазы к твердому телу, минуя расплав. Материалы, полученные при испарении и конденсации, обладают более тонкой структурой, которую обычно трудно получить при процессах плавления и затвердевания (плавку в космических условиях можно рассматривать как способ очистки). При этом в расплаве возможны следующие эффекты: испарение более летучего компонента, разрушение химических соединений (окислы, нитриды и т. п.).

Важнейший процесс получения сплавов — затвердевание. Этот процесс существенно влияет на структуру металла. При затвердевании могут возникать различные дефекты в структуре металла: неоднородность сплава по химическому составу, пористость и т. д. Присутствие в расплаве перепадов температуры и концентрации может приводить к возникновению конвекции. Если расплав затвердевает в условиях колебаний температуры, то возникают локальные колебания скорости роста кристалла, что может привести к такому дефекту, как полосчатость структуры кристалла. Для преодоления этого дефекта структуры необходимы меры по уменьшению конвекции.

В космических условиях открываются возможности приготовления однородных смесей, состоящих из компонентов с разной плотностью и с различными температурами плавления. На Земле такие смеси не могут быть устойчивы из-за силы Архимеда. Особый класс сплавов такого типа — это магнитные материалы, в том числе новые сверхпроводники.

Ранее отмечалось, что одно из преимуществ метода зонной плавки в космических условиях состоит в том, что можно получать монокристаллы более крупных размеров, чем на Земле. Отсутствие силы тяжести позволяет также по-новому организовать процессы направленной кристаллизации. Таким путем могут быть получены нитевидные кристаллы большой длины («усы», или «уискеры») с повышенной прочностью.

Рассмотрим эксперименты, в которых исследовались практические возможности космической металлургии. Так, в эксперименте на станции «Скайлэб» были получены сплавы из компонентов, которые плохо смешиваются в земных условиях. В трех ампулах были размещены заготовки из сплавов золото—германий, свинец—цинк—сурьма, свинец—олово—индий. В космических условиях образцы подвергались переплавке несколько часов, выдерживались при температуре выше точки плавления, а затем охлаждались. Доставленные на Землю образцы обладают уникальными свойствами: однородность материалов оказалась выше, чем у контрольных образцов, полученных на Земле, а сплав золота с германием оказался сверхпроводящим при температуре около 1,5 К. Аналогические смеси, полученные из расплава на Земле, этим свойством не обладают, видимо, из-за отсутствия однородности.

В рамках советско-американской программы ЭПАС был проведен такой эксперимент, целью которого было исследование возможности получать магнитные материалы с улучшенными характеристиками. Для исследований были выбраны сплавы марганец—висмут и медь— кобальт—церий. В рабочей зоне электронагревной печи поддерживалась максимальная температура 1075 °C в течение 0,75 ч, а затем в течение 10,5 ч печь остывала. Затвердевание происходило в период сна космонавтов, чтобы снизить нежелательное воздействие вибраций при их перемещениях внутри станции. Наиболее важный результат этого эксперимента состоит в том, что у образцов первого типа, затвердевших на борту космического корабля, величина коэрцитивной силы[7] на 60 % выше, чем у контрольных образцов, полученных на Земле.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Космическая технология и производство"

Книги похожие на "Космическая технология и производство" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Сергей Гришин

Сергей Гришин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Сергей Гришин - Космическая технология и производство"

Отзывы читателей о книге "Космическая технология и производство", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.