» » » » Сергей Гришин - Космическая технология и производство


Авторские права

Сергей Гришин - Космическая технология и производство

Здесь можно скачать бесплатно "Сергей Гришин - Космическая технология и производство" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Знание, год 1978. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Сергей Гришин - Космическая технология и производство
Рейтинг:
Название:
Космическая технология и производство
Издательство:
Знание
Год:
1978
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Космическая технология и производство"

Описание и краткое содержание "Космическая технология и производство" читать бесплатно онлайн.



В брошюре популярно излагаются физические основы космической технологии и рассматриваются перспективные направления космического производства — космическая металлургия, получение полупроводниковых материалов, стекла, биологически активных препаратов и т. д., — имеющие большое народнохозяйственное значение. Рассказывается о результатах экспериментов по космическому производству во время полетов советских космических кораблей «Союз» и орбитальных научных станций «Салют», а также на американских космических аппаратах.

Брошюра рассчитана на широкий круг читателей.






На рис. 12 показано, как меняется с температурой объем расплавленной стеклообразующей массы. Когда по мере остывания расплава достигается температура затвердевания Тm, дальнейший процесс может развиваться двояко. Если в расплаве присутствуют зародыши (примеси, поступающие со стенок тигля, местные неоднородности по химическому составу и т. п.), то в объеме может начаться кристаллизация и объем будет уменьшаться в соответствии с нижней кривой. Если же образование зародышей кристаллизации удается подавить, а скорость охлаждения сделать достаточно большой, то возникнет сначала состояние переохлажденной жидкости, которая при достижении температуры стеклования Тg переходит в стекло (верхняя кривая на рис. 12). В космосе возможен процесс бестигельной варки стекла, и однородность расплава будет выше ввиду отсутствия конвекции. Эти преимущества открывают возможности получения на борту космических аппаратов улучшенных и новых сортов оптического стекла.

Рис. 12. Изменение объема жидкости с температурой в процессе варки стекла (Тm — температура кристаллизации; Тg— температура стеклования. 1 — расплав; 2 — переохлажденная жидкость; 3 — стекло; 4 — кристалл)


Вместе с тем для успешного развития производства-стекла в космических условиях, по-видимому, придется преодолеть ряд технических трудностей: удаление нежелательных газовых пузырьков из стеклообразной массы в отсутствие плавучести, обеспечение заданного темпа охлаждения без естественной конвекции, контроль температурного режима охлаждения и допустимого уровня случайных ускорений в условиях бесконтейнерного удержания стеклообразной массы.

Все сказанное об особенностях производства стекла в космических условиях относится также и к получению керамики.

Рассмотрим кратко некоторые перспективные направления космического производства стекла и керамики. Цель этих исследований состоит в том, чтобы изучить возможности получения стекол с улучшенными оптическими характеристиками, с высокой температурой плавления, поглощающих и отражающих тепло, для изготовления твердотельных лазеров[11], устойчивых по отношению к химически активным средам и сохраняющих свои свойства в течение длительных отрезков времени, полупроводниковых стекол с «памятью» для интегральных схем [12].

Космическое производство этих стекол может дать ряд преимуществ. Стекла с полупроводниковыми свойствами, например, обладают высоким коэффициентом преломления в инфракрасной области. При выплавке их на Земле трудно обеспечить достаточную оптическую однородность. Другой пример — производство стекол для твердотельных лазеров, содержащих примеси с высокой концентрацией (неодим, иттербий и др.). В космосе можно повысить однородность распределения примеси и одновременно снизить поступление вредных загрязнений со стенок контейнера.

Благодаря отсутствию силы Архимеда и преобладающей роли капиллярных сил в условиях, близких к невесомости, бесконтейнерным методом можно производить изделия из стекла, состоящие из разнородных исходных материалов и обладающие высоким совершенством поверхности. В качестве примера приведем твердые фильтры, которые представляют собой взвесь малых прозрачных частиц внутри прозрачного материала, подобранные таким образом, чтобы показатели преломления этих частиц и материала совпадали лишь для одной длины волны. В результате световое излучение лишь этой длины волны будет проходить сквозь фильтр без потерь, а для всех других длин волн будет происходить сильное рассеивание и поглощение света за счет многократных отражений между частицами. В невесомости можно добиться высокой однородности распределения частиц в основном материале.

Бесконтейнерное производство стекла в космических условиях может привести к уменьшению относительного числа некоторых наиболее типичных дефектов. К таким дефектам относятся:

1) кристаллы, т. е. включения, выделяющиеся из самого стекла в процессе затвердевания;

2) инородные включения (бесконтейнерное стеклование в состоянии резко снизить их концентрацию);

3) свили, т. е. прослойки одного стекла в другом, обладающем иным химическим составом (источником свилей также в значительной степени служит поступление загрязнений со стенок тигля);

4) пузыри, т. е. газовые включения, для их устранения в условиях, близких к невесомости, жидкую стеклообразную массу, возможно, придется подвергать специальной обработке (вращение, вибрация и т. п.).

Существенного улучшения материала можно ожидать также и в случае производства в космосе волоконных световодов. Такой световод обычно представляет собой стержень из стекла с высоким коэффициентом преломления, окруженный стеклянной оболочкой с более низким коэффициентом преломления. Большое различие между этими коэффициентами обеспечивает малое поглощение и высокий коэффициент пропускания по светопроводу.

Качество светопровода зависит от точности соотношений между диаметрами стержня и оболочки, а также между их показателями преломления. Если на границе раздела стержня и оболочки имеются неоднородности размером не меньше длины волны света (разница диаметров, дефекты структуры стекла, неоднородность показателей преломления и т. д.), то на них световая энергия будет частично рассеиваться и поглощаться. На величину поглощения сильно влияет также загрязнение стекла (тяжелыми ионами, парами воды и т. п.) В космических условиях возможно усовершенствование технологии производства волоконных световодов за счет удаления нежелательных примесей при бесконтейнерной плавке, выравнивания диаметров за счет преобладающей роли сил поверхностного натяжения в расплаве.

В качестве примера перспективных керамических материалов, производство которых в космосе может оказаться выгодным, приведем эвтектики, затвердевающие в одном направлении. Этим методом в керамическую основу могут быть внедрены металлические нити.

Высказываются также предложения о производстве в космосе еще одного типа керамических материалов — композиционных микросхем. Эти керамики состоят из стеклообразной массы, включающей взвешенные частицы, которые определяют электронные характеристики материалов. В условиях невесомости можно рассчитывать на повышение их однородности.

Ввиду сложности технологии получения стекла экспериментальные исследования на космических аппаратах в этом направлении сильно отстали от работ в других областях космического производства. В марте и декабре 1976 г. при запуске в СССР высотных ракет были впервые осуществлены эксперименты по плавке стекла. С использованием экзотермических источников энергии исследовались процессы плавления и стеклообразования в условиях, близких к невесомости, на примере стекла с наполнителем (стекло с алюминием), а также особо прочного фосфатного стекла. Доставленный из космоса образец фосфатного стекла частично состоит из зон с газовыми включениями, а частично — из зоны однородного материала. У полученного сплава алюминий—стекло отмечены полупроводниковые свойства.

Медико-биологические препараты

Одна из важных задач, связанных с производством медико-биологических препаратов (вакцин, ферментов, гормонов и т. п.), состоит в их очистке. Известно, например, что повышение чистоты используемых вакцин уменьшает при их употреблении вероятность проявления вредных побочных эффектов, а это, в свою очередь, позволяет повысить дозировку и поднять эффективность лечебного препарата.

Один из наиболее распространенных способов очистки и разделения клеточного биологического материала основан на использовании электрофореза. Это явление наблюдается в дисперсных системах, т. е. таких системах, которые состоят из двух или большего числа фаз с сильно развитой поверхностью раздела между ними, причем одна из фаз (дисперсная фаза) распределена в виде мелких частиц — капелек, пузырьков и т. п. — в другой фазе (дисперсионная среда). К числу дисперсных систем относятся биологические вещества. Если к такой среде приложить внешнее электрическое поле, то под его влиянием дисперсные частицы, взвешенные в жидкости, начинают двигаться. В этом и состоит явление электрофореза.

Взвешенные в жидкой среде дисперсные частицы приходят под действием электрического поля в движение, потому что они обладают электрическим зарядом. Поскольку разные органические молекулы обладают разным электрическим зарядом, скорость, которую они приобретают в электрическом поле, различна. На этом различии скоростей и основан метод электрофоретического выделения из дисперсной среды необходимых фракций и очистки биологических материалов. Схема экспериментальной установки, построенной на основании этих принципов, показана на рис. 13.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Космическая технология и производство"

Книги похожие на "Космическая технология и производство" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Сергей Гришин

Сергей Гришин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Сергей Гришин - Космическая технология и производство"

Отзывы читателей о книге "Космическая технология и производство", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.