А. Степанов - Число и культура

Все авторские права соблюдены. Напишите нам, если Вы не согласны.
Описание книги "Число и культура"
Описание и краткое содержание "Число и культура" читать бесплатно онлайн.
[ В 2002 г. на издание этой книги был получен грант Российского фонда фундаментальных исследований (РФФИ, проект 02-06-87085), и в 2004 она вышла в издательстве "Языки славянской культуры", Москва (в отредактированном виде, т.е. несколько отличном от варианта на сайте). ]
1 В послевоенные десятилетия пользовалось успехом и такое членение: либерализм – марксизм – национализм.
2 Например, каковы основания, что система грамматических лиц включает в себя именно 3 лица, а не, скажем, 8 или 17, что физическое пространство в одну эпоху считалось трехмерным, затем четырехмерным, десятимерным и т.д.
3 Одновременно Декарт "арифметизирует", или "алгебраизирует", геометрию посредством метода координат.
4 Так, по наблюдению Уайтхеда, писатели последних столетий специально тренируют умы, чтобы воспитать в себе незаинтересованность в науке [336, с. 134].
5 В подстрочном примечании переводчик С.Лурье поясняет: "Все эти явления надо, разумеется, объяснять тем, что в сфере первобытных культур речь идет прежде всего об индивидуально известных множествах, увеличение или уменьшение которых воспринимается как присоединение или недостаток определенных индивидуумов. Таким образом, речь идет не о "меньшей способности к абстракции", а о совершенно ином направлении интересов по сравнению с нами".
6 "Числа вообще оказываются невыводимыми ни из чего другого, и все попытки на такую дедукцию терпят решительное крушение, а, в лучшем случае, когда повидимому к чему-то приводят, страдают petitio principii" [345, с. 595].
7 В свою очередь, в основе всякой математики как безусловно данный элемент лежит число [там же, с. 205].
8 О генезисе и типе различных разделов элементарной математики существуют и иные мнения. "Если наши геометрические курсы в значительной мере восходят к греческой математике, то наша арифметика имеет, несомненно, индийское происхождение" [координаты книги утеряны, остался лишь номер страницы: 183]. Как бы то ни было, независимо от первоисточников, античность прекрасно владела арифметикой, и для того, чтобы подчеркнуть разностильность современного "сайентистского" мышления, с одной стороны, и рационального бессознательного, с другой, не обязательно вдаваться в подробности, тем более, что в их оценках среди специалистов отсутствует единодушие. Когда в дальнейшем будут востребованы те сектора арифметических знаний, которые не были знакомы ни грекам, ни римлянам, это будет специально оговариваться.
1.2. Теоретическая модель
Теперь, вероятно, достаточно подготовлена почва для более предметного разговора. Содержание настоящего раздела покажется иным из читателей отвлеченным, а то и скучным. Но это неизбежная и, надеюсь, краткосрочная скука, которую следует перетерпеть. Те, для кого приведенные выкладки тривиальны, могут прочесть данный раздел "по диагонали", подробности адресованы тем, кто основательно подзабыл школьную математику, хотя для них – см. Предисловие – такое чтение способно оказаться затрудненным вдвойне. Уже на старте необходимо выравнять шансы двух разрядов читателей. Сходный мотив ответствен и за выбор смешанного, индуктивно-дедуктивного пути изложения: каждая из абстракций по возможности снабжена иллюстрациями. Чтобы не злоупотреблять терпением, часть выкладок вынесена за рамки раздела, и поначалу допустимо лишь бегло ознакомиться с ним. Впоследствии, следуя ссылкам, его можно использовать как справочный материал.
Выше упоминались некоторые из совокупностей тесно сопряженных друг с другом понятий. Таковы лица местоимений в языке, глагольные времена, составные члены триад немецкой классической философии, измерения физического пространства и др. Подобные группы отличаются своеобразным качеством целостности, и сейчас предстоит рассмотреть их более аккуратно.
Для удобства обозначим любую из таких совокупностей, или систем, через S. Каждая из систем S состоит из определенного числа элементов или, что то же, разбивается на эти элементы. Последние могут быть самыми разнообразными: ветви государственной власти (законодательная, исполнительная, судебная), грамматический род (мужской, женский, средний), измерения физического пространства (три в ньютоновской механике и четыре в релятивистской). Таким образом, мы отвлекаемся от конкретной природы составных элементов; нам важно лишь то, что они вообще существуют и что в каждой системе S их определенное количество. Обозначим это количество через M. Вообще говоря, заранее неизвестно, какова именно величина M – в разных случаях она различна, – ее-то и предстоит выяснять. Итак, система S состоит из M элементов.
Пока использована не вся информация. Мы видим, что элементы, из которых состоит система, не изолированы друг от друга, а каким-то образом взаимодействуют, связаны между собой, находятся в определенных реальных и/или логических отношениях. Никто ведь не станет всерьез утверждать, что, скажем, прошлое, настоящее, будущее суть изолированные друг от друга хронологические категории. Ради общности не будем строить никаких предположений о предметном характере упомянутых отношений: в каждой из систем S он, очевидно, свой. Пока достаточно и того, что связи, отношения явно наличествуют. Попробуем их пересчитать.
Если элемент a1 связан с элементом a2, мы говорим об одном отношении между двумя элементами. Если элемент a1 сопряжен еще и с элементом a3 , то фиксируется второе отношение. Аналогично, если элементы a2 и a3 также корреспондируют между собой, то имеется третье отношение и т.д. Обозначим общее количество связей в системе S через k и отныне будем говорить, что она состоит из M элементов и k отношений.
Определение свойств систем класса S еще не закончено. Ранее упоминалось такое качество как "целостность", постараемся с ним разобраться.
Важно, что система S в известном смысле является полной, т.е. включает в свой состав все значимые для себя элементы. Скажем, если кантовская система высших человеческих ценностей состоит из истины, добра, красоты, то имеется в виду, что нет других высших ценностей, сопоставимых по значению с названными, к ним не сводимых, но при этом не внесенных в список. Этот список по-своему исчерпывающ.
Если бы существовала хотя бы еще одна самостоятельная высшая ценность, которую мы забыли привести, то рассматриваемую систему не удалось бы полагать полной. Сходным образом, если бы помимо трех лиц местоимений мы пользовались еще каким-то независимым четвертым, то у нас не было бы прав именовать соответствующую грамматическую совокупность полной. Указанное обстоятельство математики иногда выражают так: система S состоит из M и только из M элементов. Определенную трудность для читателя может представлять разве что один нюанс: качество полноты системы следует полагать ранее предъявленного количества элементов M ("ранее" – не обязательно во времени, а в плане логического предшествования).(1) Сама же величина M, во-первых, бывает в разных списках различной и, во-вторых, выступает в качестве логически производной.
Система S является, кроме того, замкнутой или относительно замкнутой. Что это означает? – Смысл очень прост: составные элементы системы находятся в фактически и/или логически значимых связях только между собой и ни с чем внеположным. По крайней мере, никакие посторонние влияния не должны быть в состоянии изменить внутреннюю организацию, собственное строение системы, последняя должна быть независима от них. Все конституирующие связи принадлежат самой системе S ("все свое ношу с собой"). Будь это не так, она оказалась бы лишенной самодостаточности, логической прочности, произвольно перестраиваясь под воздействием тех или иных привходящих факторов.
Скажем, если ученые утверждают, что физическое пространство обладает тремя (или четырьмя) измерениями, то в обоих случаях предполагается, что физические события полностью вписываются в систему названных измерений. Заведомо исключается возможность непредусмотренного влияния из "ниоткуда": из неучтенных измерений или невесть из каких краев. В противном случае нам то и дело приходилось бы становиться свидетелями появления своеобразного deus ex machina. Отнюдь не случайно Ньютон сопровождал построение механики упорной борьбой с тем, что считал суевериями, т.е. с верой во вмешательство духов, ангелов или даже самого Бога в нынешнее течение физических процессов. Не стоит забегать чрезмерно вперед, но физическое пространство выступает как нечто самодостаточное, логически изолированное.
Подобным предположением пользуются не только физики. Когда правоведы говорят о государственной власти, о разделении ветвей, считается само собой разумеющимся, что обязательные для всех решения исходят только от легальных, перечисленных в теории и в законе ветвей. Известна и иная точка зрения: некоторые люди склонны подозревать, что президенты, парламенты, суды – не более, чем крикливо размалеванная декорация, за которой "на самом деле" скрываются могущественные кукловоды (масоны, мафия, клубы заговорщиков-толстосумов, а то и пришельцы из космоса). Однако в юридическом плане такое мнение признается ничтожным, и совокупность законных инстанций наделяется самодостаточностью. Из последней не вытекает, что государственная власть свободна от влияния со стороны общества, прессы, групп интересов, текущих событий, но сам принцип разделения властей из-за этого не ставится под вопрос, – будучи закреплен в конституции, он обладает солидным запасом прочности, у него всегда семь футов под килем.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Число и культура"
Книги похожие на "Число и культура" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "А. Степанов - Число и культура"
Отзывы читателей о книге "Число и культура", комментарии и мнения людей о произведении.