» » » » Брюс Шнайер - Секреты и ложь. Безопасность данных в цифровом мире


Авторские права

Брюс Шнайер - Секреты и ложь. Безопасность данных в цифровом мире

Здесь можно скачать бесплатно "Брюс Шнайер - Секреты и ложь. Безопасность данных в цифровом мире" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая околокомпьтерная литература, издательство Питер, год 2003. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Брюс Шнайер - Секреты и ложь. Безопасность данных в цифровом мире
Рейтинг:
Название:
Секреты и ложь. Безопасность данных в цифровом мире
Автор:
Издательство:
Питер
Год:
2003
ISBN:
ISBN 5-318-00193-9
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Секреты и ложь. Безопасность данных в цифровом мире"

Описание и краткое содержание "Секреты и ложь. Безопасность данных в цифровом мире" читать бесплатно онлайн.



В этой книге Брюс Шнайер – автор нескольких бестселлеров и признанный специалист в области безопасности и защиты информации, опираясь на собственный опыт, разрушает заблуждения многих, уверенных в конфиденциальности и неприкосновенности информации. Он разъясняет читателям, почему так сложно предотвратить доступ третьих лиц к личной цифровой информации, что нужно знать, чтобы обеспечить ее защиту, сколько средств следует выделять на обеспечение корпоративной безопасности и многое, многое другое.






Не важно, какие алгоритмы и насколько длинные ключи используются; секреты, которые хранятся в памяти пользователя, беззащитны сами по себе.

Ключ, сгенерированный случайным образом, намного лучше, но проблемы остаются. Генератор случайных чисел должен создавать ключи с максимальной энтропией. Недостатки генератора случайных чисел – те же, что привели к сбоям системы шифрования в Netscape Navigator 1.1. Хотя генератор случайных чисел применяли для создания 128-битовых ключей, максимальная энтропия достигала примерно 20 бит. То есть алгоритм был не лучше, чем если бы использовался 20-битовый ключ[23].

Второй предмет заботы – это качество алгоритма шифрования. Все предыдущие расчеты предполагали, что алгоритм получал ключи при помощи вычислений и использовал их совершенным образом. Если в алгоритме есть слабые места, доступные для атаки, это существенно снижает энтропию ключей. Например, алгоритм А5/1, используемый европейской сетью сотовых телефонов GSM, имеет 64-битовый ключ, но может быть взломан за время, требующееся для взлома 30-битового ключа при помощи атаки «в лоб». Это значит, что хотя у алгоритма имеется ключ с 64-битовой энтропией, он задействует для ключа только 30 бит энтропии. Вы можете с тем же успехом использовать хороший алгоритм с 30-битовым ключом.

По этой причине проходит довольно много времени, прежде чем шифровальщики начинают доверять новому алгоритму. Когда кто-то предлагает новый алгоритм, у него есть определенная длина ключа. Но обеспечивает ли алгоритм реально ту энтропию, которая заявлена? Может потребоваться несколько лет анализа, прежде чем мы поверим, что он это делает. И даже тогда мы можем легко ошибиться: возможно, кто-то придумает новые математические подходы, которые понизят энтропию алгоритма и сломают его. Поэтому рекламу программ, в которых обещаются тысячебитовые ключи, трудно воспринимать серьезно – ее создатели не имеют понятия, как работают ключи и энтропия.

Похожая проблема существует и для физических ключей и замков. Принято думать, что слесарь возит в своем грузовике огромное кольцо с ключами от машин. Может потребоваться 10 000 ключей, чтобы открыть все замки, но в реальности несколько дюжин ключей откроют любой из них. Иногда слесарю достаточно просто взять другой ключ, отличающийся от предыдущего на 1-2 «бита», – отметим, что это комбинация анализа и лобовой атаки – и этого уже достаточно. Да, процесс долгий, но совсем не такой, как проверка всех 10 000 возможных ключей (старые замки – четырехштырьковые). Действительная надежность дверного замка существенно отличается от теоретической.

То же самое с комбинациями замков. Вы можете перебрать все возможные комбинации – и существуют машины для взлома сейфов, которые так и делают, – или поступить хитрее. Современные машины для взлома сейфов применяют микрофон, чтобы слушать звук, производимый дисками, когда их поворачивают, и они могут открыть сейф намного быстрее, чем старые, действующие «в лоб».

Сказанное здесь заставляет очень внимательно подходить к выбору алгоритма. Мы еще обсудим это более детально в конце этой главы.

Одноразовое кодирование

Кодирование одноразового использования – это самый простой из всех алгоритмов, его изобрели незадолго до XX века. Основная идея его состоит в том, что у вас есть набор символов ключа. Вы прибавляете один символ ключа к каждому символу открытого текста и никогда не повторяете символы ключа. (Это «одноразовая» часть.) Например, вы прибавляете В (2) к С (3), чтобы получить Е (5), или Т (20) к L (12), чтобы получить F (6). ((20 + 12) mod 26 = 6.) Такая система подходит для любого алфавита, в том числе и бинарного. И это единственный имеющийся у нас алгоритм, безопасность которого может быть доказана[24].

Вспомним понятие расстояния уникальности. Оно возрастает при увеличении длины ключа. Когда длина ключа приближается к длине сообщения, расстояние уникальности стремится к бесконечности. Это означает, что невозможно восстановить открытый текст, и это доказывает безопасность одноразового кодирования.

Но, с другой стороны, это практически бесполезно. Поскольку ключ должен при этом быть такой же длины, как и сообщение, то проблема не решена. Единственный здравый подход к шифрованию должен предполагать, что очень длинная секретная информация – сообщение – превращается с его помощью в очень короткую секретную информацию – ключ. При помощи одноразового кодирования вы нисколько не сокращаете секретную информацию. Так же сложно доставить шифр получателю, как и доставить само сообщение. Современная криптография зашифровывает большие объекты, например цифровые фильмы, соединения через Интернет или телефонные разговоры, и такое шифрование практически невозможно осуществить, работая с одноразовым кодированием.

Одноразовое кодирование практически использовалось в особых случаях. Русские шпионы применяли для общения алгоритм одноразового кодирования, используя карандаш и бумагу. Агентство национальной безопасности (NSA) раскрыло эту систему, поскольку русские использовали ее повторно. Горячая линия телетайпа между Вашингтоном и Москвой была зашифрована именно таким образом.

Если утверждают, что некая программа использует этот алгоритм, то здесь почти наверняка обман. А если и нет, то программа наверняка непригодна для использования или небезопасна.

Протоколы

Шесть инструментов, о которых я говорил в предыдущей главе, – симметричное шифрование, коды аутентификации сообщений, шифрование с открытым ключом, односторонние хэш-функции, схемы цифровых подписей и генераторы случайных чисел – составляют набор инструментов шифровальщика. С его помощью мы выстраиваем криптографические решения реальных задач: «Как мне послать секретное письмо по электронной почте? Как можно предотвратить мошенничества с телефонными звонками? Как мне обеспечить безопасность системы голосования через Интернет?» Эти задачи безопасности мы решаем, компонуя простейшие элементы в так называемые протоколы. Приходится использовать и другие второстепенные элементы, но, по существу, шесть перечисленных выше элементов составляют ядро любого криптографического протокола.

Например, предположим, что Алиса хочет сохранить в тайне некоторые файлы данных. Вот протокол, который это делает. Алиса выбирает пароль или даже лучше – ключевую фразу. Криптографические программы хэшируют этот пароль, чтобы получить секретный ключ, а затем, применяя симметричный алгоритм, зашифровывают файл данных. В результате получится файл, доступ к которому есть только у Алисы или у того, кто знает пароль.

Хотите создать безопасный телефон? Используйте криптографию с открытым ключом, чтобы сформировать сеансовый ключ, а затем при помощи этого ключа и симметричной криптографии зашифруйте переговоры. Хэш-функция обеспечивает дополнительную безопасность против атак, проводимых человеком. (Подробнее об этом позже.) Чтобы засекретить сообщение электронной почты, воспользуйтесь криптографией с открытым ключом для соблюдения секретности и схемой цифровой подписи для аутентификации. Электронная торговля? Обычно для нее не требуется ничего, кроме цифровых подписей и, иногда, шифрования для секретности. Секретный контрольный журнал? Возьмите хэш-функции, шифрование, может быть, MAC и перемешайте.

То, что мы сейчас делаем, и есть создание протоколов. Протокол – это не сложнее, чем танец. Это последовательность заданных шагов, которую выполняют два (или больше) партнера и которая предназначена для решения поставленной задачи. Представьте себе протокол, которым пользуются продавец и покупатель при покупке мандаринов. Вот необходимые шаги:

1. Покупатель спрашивает у продавца мандарины.

2. Продавец дает ему мандарины.

3. Покупатель платит продавцу.

4. Продавец возвращает ему сдачу.

Все, о ком идет речь в протоколе, должны знать шаги. Например, покупатель знает, что он должен заплатить за мандарины. Все шаги должны быть однозначны: ни продавец, ни покупатель не могут достичь шага, на котором они не знают, что делать. Кроме того, протокол должен обязательно завершаться – в нем не должно быть бесконечных циклов.

Шаг 2 не будет работать как надо, если продавец не поймет семантическое содержание шага 1. Продавец не выполнит шаг 4, если на шаге 3 не признает деньги настоящими. Попробуйте купить мандарины в США на польские злотые и посмотрите, как вам это удастся.

Нас особо волнуют протоколы безопасности. Кроме всех перечисленных выше требований мы хотим, чтобы покупатель и продавец не имели возможности обманывать (что бы ни означало «обманывать» в нашем контексте). Мы не хотим, чтобы продавец мог заглянуть в бумажник покупателя на шаге 3. Мы не хотим, чтобы продавец не отдал покупателю сдачу на шаге 4. Мы не хотим, чтобы покупатель застрелил продавца на шаге 3 и ушел с украденными мандаринами. Такие способы обмана распространены и в материальном мире, а анонимность киберпространства только увеличивает опасность.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Секреты и ложь. Безопасность данных в цифровом мире"

Книги похожие на "Секреты и ложь. Безопасность данных в цифровом мире" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Брюс Шнайер

Брюс Шнайер - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Брюс Шнайер - Секреты и ложь. Безопасность данных в цифровом мире"

Отзывы читателей о книге "Секреты и ложь. Безопасность данных в цифровом мире", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.