Александр Гордон - Диалоги (июнь 2003 г.)

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Диалоги (июнь 2003 г.)"
Описание и краткое содержание "Диалоги (июнь 2003 г.)" читать бесплатно онлайн.
14 глав книги – это стенограммы ночных передач-диалогов телевизионной программы «Гордон». Темы этих передач – иногда ответы, но чаще попытки ответов на проблемы, загадки, вопросы, которые то и дело волны современной науки и современной цивилизации выбрасывают на берега нашего беспокойного сознания.
1. Программирование недетерминированных игр
2. Гравитационные волны
3. Коммуникация у птиц
4. Возникновение биосферы
5. Витгенштейн и современная философия
6. Доказательность в математике
7. Суперпарамагнетизм
8. Нейробиологические механизмы агрессии
9. Зачем философия?
10. Фотосинтез и флуоресценция
11. Математика и ботаника
12. Вселенная и Человек
13. Иуда: версии предательства
14. Гипноз и сознание
И вот точная формулировка доказательства составляла, так сказать, следующий уровень точности для аксиоматического метода. И вторая вещь – это язык. Дело в том, что обыденный язык, он не просто двусмыслен, он многосмыслен. Я обычно на лекциях привожу в пример слово «радикал». Есть радикальные партии, есть свободные радикалы в химии и есть, как говорится, радикалы – корень квадратный, который в школе учат. Но если говорить о контекстах, то там многозначность языка становится бесконечной. Но без этого поэзия была бы невозможна, если бы язык, на котором мы разговаривали, имел только один смысл. Но для математики, для науки, стремящейся к точности, это достоинство естественного языка является недостатком. Поэтому другая вещь, которая была нужна, – это создание достаточно богатых формальных языков.
Дело в том, что математика довольно давно начала вводить элементы формального языка – различные обозначения, переменные, знаки для операций, знаки для того же радикала, и так далее. И многие имеют впечатления о математике как о формулах, вот формулы – это элементы формального языка. Но тем не менее, если вы посмотрите даже современные математические журналы, то кроме формул там ещё и довольно большой текст. И математическая логика предложила такие формальные языки, которые включают не только оперативные элементы математики, но и всё содержание математическое может быть изложено на формальном языке. Этим достигался ещё один уровень точности, что поимело, между прочим, любопытные последствия.
Сейчас говорить о влиянии компьютеров на нашу жизнь, это общее место. Понятно, что они завоёвывают всё большее и большее место в нашей жизни. Но если посмотреть, какие люди были у истоков создания первых компьютеров, то мы там увидим Норберта Винера, Алана Тьюринга, ещё ряд людей, я потом, может быть, их назову. Эти люди были математиками, которые начинали свою профессиональную деятельность в области математической логики. Норберт Винер был студентом Бертрана Рассела, известного английского философа, но он был и одним из создателей первых формальных систем. Алан Тьюринг тоже был профессиональный логик. И я думаю, что это осознание, что формальные языки могут быть столь же богаты по выразительным возможностям, как и естественный язык, но точными, с точным и однозначным смыслом, – это позволило им предвидеть, что компьютер – это не есть просто большой арифмометр, а что он может стать, как говорится, интеллектуальным орудием. Так что опыт работы людей в математической логике привёл и к таким, я бы сказал, «сайд-эффектам», как создание компьютеров.
Ну а с точки зрения внутреннего развития, то я уже сказал, что можно считать, что математическая логика на две ступеньки подняла точность математического языка по сравнению с классическим аксиоматическим методом. Но история продолжается. И обнаружились и другие любопытные вещи. Мой учитель, академик Анатолий Иванович Мальцев сделал, на мой взгляд, два очень глубоких открытия, о которых я попытаюсь рассказать, но не в деталях, поскольку это довольно сложно.
Сначала хочу объяснить то удивление, которое, в частности, я испытал (используя некоторый образ, который может быть не совсем корректен в таких научных беседах, но по-другому я не сумею, видимо, объяснить то удивление, а может быть восхищение, которое лично я испытал). Представьте, что какая-то фирма вынуждена создать себе охрану. И вдруг оказывается, что созданная охрана является весьма мощным производителем, то есть даёт удивительный эффект для основной производственной деятельности.
Ну а теперь вернёмся к математике. Так вот, я уже объяснил, что математическая логика была создана как некоторое охранное предприятие. Охрана от противоречий. Как для нынешних фирм система охраны необходима, так и математика нуждалась в определённом охранении. Но казалось бы, ну что тут такого? Но вот оказалось, что языки, в частности один из языков математической логики, так называемое «исчисление предикатов первой ступени», обладает некоторым мощным внутренним математическим свойством. Анатолий Иванович Мальцев в 36 году доказал так называемую Теорему компактности. Не буду говорить, что это такое, но это, так сказать, мощное внутреннее свойство формального языка. А в 41 году Анатолий Иванович продемонстрировал, что только с помощью этого свойства языка можно доказать очень многие теоремы, которые уже в специализированных отделах математики доказывались – так называемые локальные теоремы, причём, разные теоремы разными способами. Они чем-то были похожи, но кроме ощущения того, что они похожи, ничего другого не было.
Оказалось, что большинство из этих локальных теорем – это есть следствие этой локальной теоремы. Что достаточно сформулировать на этом формальном языке соответствующее утверждение с некоторыми ограничениями, и тогда уже как следствие получается эта локальная теорема. Вот здесь я хотел бы сослаться на книгу Пойя – это известный американский учёный, но на самом деле он из Венгрии происходит. Пойя написал книгу, которая у нас была переведена, «Как решать задачу?», она была издана в «Учпедгизе». И там, собственно, рассказывается некоторая эвристика и даются некоторые советы, как решать задачу, как анализировать и так далее. И там, в частности, описываются разные явления, которые при этом возникают. И одно из явлений называется «парадокс изобретателя». Там особенно про изобретателя не идёт речи, но суть состоит в следующем: иногда, решая задачу, полезно взглянуть на неё, может быть, сверху и рассмотреть более общую задачу. И при таком взгляде она становится проще. Я считаю, что открытие локальной теоремы и открытие способа её применения для доказательства серьёзных теорем, которые уже были известны и очень многих новых теорем, это был парадокс изобретателя.
Оказалось, что суть большинства этих локальных теорем – это свойство того формального языка, который используется. Ну, дальше – больше. Теорема компактности привела к созданию одного из наиболее развитых разделов математической логики – так называемой «теории моделей». И здесь прослеживается, на мой взгляд, довольно любопытная эволюция, которую я попытаюсь как-то объяснить. Я для себя использую деление «современная математика» и «классическая математика», достаточно понятное различие. Можно про любую науку сказать – современная и классическая. Но на самом деле, что такое классическая математика и что такое современная? Классическая математика занималась очень ограниченным числом объектов – линия, плоскость, фигуры на плоскости, трехмерное пространство, далее непрерывные функции в трехмерном пространстве. Этим классическая математика занималась многие века.
Современная математика началась, я думаю, с открытия Эвариста Галуа, который для решения классических вопросов о нахождении корней уравнения в радикалах, о которых я уже здесь говорил, предложил ввести некоторые новые вещи. Не те классические объекты, а автоморфизм и конечные группы и так далее. Для решения классических вопросов нужно было ввести новые сущности. И вот с этого, на мой взгляд, начинается современная математика. Но и сейчас изучение классических объектов можно отнести к работам по классической математике. Но необходимо и изучение тех новых конструкций, которые нужны и для внутреннего развития математики, и для решения старых вопросов. Вот знаменитая теорема Ферма, которую несколько столетий пытались решать математики, она была, наконец, решена несколько лет тому назад. Но для её решения, а она была сформулирована в 17-м веке, понадобились совершенно современные методы. И это потребовало нескольких столетий развития математики. Так что существуют классические вопросы и классическая математика и есть современная математика, когда изучаются уже объекты более общей природы.
Так вот первые применения Локальной теоремы, которые Анатолий Иванович делал, касались современной математики. Они относились к теории групп, к теории алгебраических систем, к таким понятиям, которые характеризуют современную математику. Хрущовский применил методы математической логики для совершенно классического раздела математики – для теории чисел и алгебраической геометрии. Это такие как бы священные коровы, которым молятся. И оказалось, что даже для решения таких серьёзных, вернее, классических вопросов, методы теории моделей, математической логики, тоже применимы. А ещё один этап, тут я хочу говорить о своих собственных последних работах, связан со следующим. Тут небольшое отступление всё-таки требуется.
Развитие всякой науки, в том числе и математики, сопровождается не только постановками задач и их решениями, но и развитием понятийного аппарата, ведением понятий. Причём, ведение правильных понятий на самом деле является очень существенным, и часто введение плодотворного понятия является столь продуктивным, что вызывает взрывную реакцию и проникновение понимания в существо вещей. Так вот, мне удалось применить математическую логику и её средства для того, чтобы ввести в обиход понятия, которые важны для классических теорий. Итак, Мальцев применил математическую логику для современной математики, Хрущовский для решения вопросов классической математики, а я предложил некоторые понятия для классической математики, в том числе и для теории чисел. То есть один из наиболее таких развитых разделов для теории чисел, а теория чисел – это одна из самых первых математических теорий.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Диалоги (июнь 2003 г.)"
Книги похожие на "Диалоги (июнь 2003 г.)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Александр Гордон - Диалоги (июнь 2003 г.)"
Отзывы читателей о книге "Диалоги (июнь 2003 г.)", комментарии и мнения людей о произведении.