Алексей Семихатов - Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей

Все авторские права соблюдены. Напишите нам, если Вы не согласны.
Описание книги "Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей"
Описание и краткое содержание "Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей" читать бесплатно онлайн.
Рис. 1.2. Два фрагмента пути, по которому Марс движется на небе
Он жил в эпоху, когда не было еще уверенности в существовании некоторой общей закономерности для всех явлений природы. Какой глубокой была у него вера в такую закономерность, если, работая в одиночестве, никем не поддерживаемый и мало понятый, он на протяжении многих десятков лет черпал в ней силы для трудного и кропотливого эмпирического исследования движения планет и математических законов этого движения![4]
Больше того, Кеплер жил в эпоху, когда ему в течение нескольких лет приходилось всерьез заниматься защитой своей матери от обвинений в колдовстве; женщине реально грозил костер.
Кеплер сформулировал три высказывания. Они известны как три закона Кеплера.
1. Про эллипсы как таковые. Орбиты – эллипсы; Солнце – в одном из фокусов. Это был грандиозный успех, превращение наблюдений – сырых данных о движении планет по небу – в математическое высказывание и одновременно с этим колоссальный прорыв в соотнесении наших представлений об идеальном с реальностью. Ведь вполне естественно было думать, что «природа предпочитает совершенство» в виде сфер и круговых орбит, с Солнцем в центре, но, во-первых, Кеплер понял, что это не так, а во-вторых, сумел показать, как же все происходит на самом деле, причем это второе – с математической точностью (окружность – частный случай эллипса; в этом смысле орбиты могли бы быть и круговыми, просто они такими не оказались).
2. Про скорость движения по этим эллипсам. Она, оказывается, не постоянная. Кеплеру принадлежит ясная формулировка, из которой следует, в какой части эллипса планета движется быстрее и в точности во сколько раз быстрее, чем в какой-нибудь другой части. Закон так закон! – ему следуют все планеты, включая Землю. Чтобы его сформулировать, Кеплер снова приглашает нас посмотреть на орбиты со стороны и делает геометрические построения, проводя воображаемую линию от Солнца к планете и рассуждая о том, как эта линия поворачивается. Это довольно удивительно, если учесть, что никакой такой «линии» нет, но математические рассуждения с ее использованием позволяют сформулировать правило, описывающее реальные движения всех планет. Сравнивая положение планеты на орбите «сейчас» и, скажем, через день, Кеплер просит нас обратить внимание на площадь фигуры, образованной двумя радиусами и участком орбиты, который планета прошла за день. Второй закон Кеплера состоит в том, что площадь такого треугольника, заметаемого за выбранное время (скажем, день), – одна и та же вдоль всей орбиты. Там, где планета ближе к Солнцу, она движется как раз настолько быстрее, чтобы скомпенсировать меньшую высоту треугольника (расстояние от Солнца). Разница в скоростях вблизи Солнца и вдали от него велика для вытянутых эллипсов; для Земли же максимальная и минимальная скорости составляют 30,29 км/с и 29,29 км/с (соответствующие расстояния до Солнца при этом 147,09 млн и 152,10 млн километров). Земля ближе к Солнцу и движется быстрее, когда в Северном полушарии осень и зима, из-за чего этот прекрасный сезон формально оказывается укороченным на несколько дней. (Пять миллионов километров ближе или дальше от Солнца – далеко не первостепенный фактор, влияющий на климат.)
3. Про то, как размеры эллипсов, по которым движутся разные планеты, соотносятся с временем их полного оборота вокруг Солнца. Не только каждая планета сама по себе следует законам, но и каждая пара планет подчиняется строгой и одной для всех математике. «Размером» эллипса в данном случае является его большая полуось – расстояние от центра (а не от Солнца!) до точки наибольшего удаления. Для любой пары планет Кеплер предлагает поделить друг на друга их большие полуоси, а результат возвести в квадрат. В качестве второго действия нужно поделить друг на друга продолжительности года на каждой планете, а результат этого деления возвести в куб. Получится, говорит Кеплер, одно и то же. Чем дальше планета от Солнца, тем больше времени занимает ее полный оборот – не только из-за того, что орбита длиннее, но еще и из-за того, что скорость планеты меньше (в 4 раза дальше – в 8 раз дольше; в 9 раз дальше – в 27 раз дольше).
Кеплер начал с определения формы орбиты Земли, потом это сильно облегчило ему задачу найти форму всех других орбит. Но как же было подступиться к орбите тела, с которого были сделаны все наблюдения? Понадобилось третье, кроме Земли и Солнца, тело, а именно – Марс. Но, поскольку орбита Марса была равным образом неизвестна, Кеплер использовал его как источник некоторого набора отдельных точек («дискретной» информации). Ключ – момент, когда Солнце, Земля и Марс оказались на одной прямой. (Такое положение трех тел случается с неплохой точностью, потому что орбиты Земли и Марса лежат почти в одной плоскости; Земля при этом совершает один оборот вокруг Солнца быстрее, чем Марс.) Направление этой прямой относительно звезд следовало зафиксировать; оно сыграет «опорную» роль. А далее – вот источник дискретности в применяемой схеме! – требовалось знать продолжительность марсианского года (это отдельный вопрос, ответ на который у Кеплера был). Через один марсианский год Марс окажется снова на той же прямой, но Земля нет. Для наблюдателя с Земли Марс и Солнце будут видны под некоторым углом друг к другу. Этот угол, который можно непосредственно измерить, – полдела. Вторая половина – это линия «Солнце – Земля» в этот же момент: необходимо определить ее направление относительно звезд, что позволит найти угол, который она образует с «опорным» направлением. Принимая расстояние от Солнца до Марса в «опорном» положении за единицу, находим треугольник по стороне и двум углам. Мы определили (!) точку на земной орбите. После этого все вычисления надо повторить, найдя в таблице положение Марса и Солнца относительно звезд еще один марсианский год спустя, и еще один и так далее. Каждый раз таким образом появляется по точке; Кеплер сумел уложить все эти точки на слабо вытянутый эллипс (не поддавшись искушению заявить о круговой орбите в пределах точности вычислений!). Когда орбиты всех планет были найдены, настала очередь следующей задачи – угадывать законы движения планет по этим орбитам. Это означало делать какие-то допущения (с каких начать?!), проверять их, определяя с помощью таблиц пространственное положение планет в разные моменты времени, и если допущения не подтверждались, то придумывать и проверять другие. Перед нами одинокий человек в окружении пустоты и сферы звезд, вооруженный числовыми таблицами данных и одержимый страстным желанием своими силами разобраться в устройстве известного ему мира.
Кеплер не открыл для нас планеты – они были известны с доисторических времен. Но он в некотором роде открыл для нас Солнечную систему, показав, какова в ней система – какой порядок там действует. Сейчас все предсказания, скажем, взаимного расположения Земли и Марса, необходимые для планирования путешествий между ними, математически делаются на основе тех самых кеплеровых эллипсов (хотя и требуют на фоне главного эффекта учитывать ряд дополнительных факторов, с которыми у нас будет еще немало поводов познакомиться). Про орбиты планет, да и не только планет, часто говорят «кеплеровы». Космический телескоп «Кеплер» проработал (не без приключений) до 2018 г., исследовав в общей сложности 530 506 звезд и открыв 2662 экзопланеты. Небольшая выборка экзопланет, сравнимых с Землей по размеру и находящихся в зоне обитаемости[5], приведена на рис. 1.3. Поиск таких объектов заведомо невозможен без знания о том, что искомые планеты – о существовании которых Иоганн Кеплер не мог и помыслить – движутся вокруг своих звезд по кеплеровым орбитам. По-моему, «Кеплер» – подходящее название для такого телескопа.
Рис. 1.3. Земля и несколько экзопланет. Данные им названия отражают тот факт, что они открыты с помощью космического телескопа «Кеплер»
*****
Относительность и инерция. Современник Кеплера Галилей не бросал предметы с колокольни на Кампо-деи-Мираколи в Пизе, за возможным исключением незадокументированных случаев баловства[6]. Галилей первым всерьез направил телескопическую трубу в небо и совершил революционные открытия (включая спутники Юпитера, кольца Сатурна, горы на Луне, пятна на Солнце и фазы Венеры); однако среди тех многочисленных вещей, которые он постоянно был готов обдумывать, предметом его долгосрочного интереса было движение.
Для нас важны два глубоких свойства движения, осознание которых началось с Галилея: относительность и инерция. Галилей усматривает их в природе вещей с помощью того, что ему неизменно удавалось с блеском: он извлекает «идеальные» следствия не из идеальных, а вполне реальных опытов, а также применяет логический анализ путем постановки мысленных экспериментов. Успехи в таком подходе к исследованию природы, собственно говоря, и снискали ему титул основоположника научного метода (что, впрочем, известно нам сейчас, но не было известно ему самому). Если художник рисует натуру, находясь вместе с ней в каюте на корабле, который плавает в виду берега, то при идеальном состоянии моря, рассуждает Галилей, художник может забыть, что он находится не на берегу, а на корабле; ничто не будет мешать созданию картины. Но на взгляд людей, стоящих на берегу, рука художника участвует в движении, включающем движение самого корабля. Следовательно, если корабль не качается и не дергается, его движение не оказывает никакого влияния на происходящее в каюте. Отсюда происходят две идеи: одну впоследствии стали называть принципом относительности, а другая, важная для Галилея (и неизменно важная с тех пор), – независимость движений, т. е. движение кисти относительно холста и движение холста относительно берега независимы. Развивая именно этот тезис, Галилей стал первым, кто теоретически получил параболу для «стрелы» (тела, брошенного под углом к горизонту). Исходя из того, что горизонтальное и вертикальное движения независимы, он замечает, что горизонтальное движение равномерно, а вертикальное ускоренно; их сложение и дает параболу – вывод, который Галилей считал одним из главных результатов своей теории движения.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей"
Книги похожие на "Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Алексей Семихатов - Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей"
Отзывы читателей о книге "Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей", комментарии и мнения людей о произведении.