» » » Сэмюел Стернберг - Трещина в мироздании


Авторские права

Сэмюел Стернберг - Трещина в мироздании

Здесь можно купить и скачать "Сэмюел Стернберг - Трещина в мироздании" в формате fb2, epub, txt, doc, pdf. Жанр: Биология, издательство Литагент Corpus, год 2019. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Сэмюел Стернберг - Трещина в мироздании
Рейтинг:
Название:
Трещина в мироздании
Издательство:
неизвестно
Жанр:
Год:
2019
ISBN:
978-5-17-109309-9
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Трещина в мироздании"

Описание и краткое содержание "Трещина в мироздании" читать бесплатно онлайн.



Дженнифер Даудна – одна из ведущих современных генетиков, под ее руководством была разработана технология редактирования генома CRISPR – самый дешевый, но при этом самый точный и мощный способ манипуляций с ДНК. Но довольно быстро стало понятно, что этот метод, позволяющий прицельно изменять ДНК живого организма, – очень рискованная технология, которую уже называют “самым опасным изобретением со времен атомной бомбы”. Генетические манипуляции – это настоящая “трещина в мироздании”, из которой могут вырваться темные силы, способные уничтожить человечество…





В совокупности эти новые сведения стали отличной подсказкой для ответа на вопрос, какую роль CRISPR играет у бактерий и архей. Авторы упомянутых статей обнаружили свидетельство в пользу того, что CRISPR, вероятно, является частью иммунной системы прокариот – адаптацией, позволяющей микроорганизмам успешно справляться с вирусами.

Напоследок, в качестве последнего козыря, Джилл выложила на стол самую новую статью о CRISPR. Опубликованная коллективом исследователей из Национальных институтов здравоохранения под руководством Киры Макаровой и Евгения Кунина[49], она называлась “Гипотетическая иммунная система прокариот, основанная на РНК-интерференции” (A Putative RNA-Interference-Based Immune System in Prokaryotes). Этот заголовок моментально привлек мое внимание. Хотя в этой статье, как и в трех предыдущих, явно недоставало убедительных экспериментальных данных, ее авторы проделали значительную работу, собрав всю доступную информацию о CRISPR. Сопоставив результаты множества более ранних исследований с экспертной оценкой распространения CRISPR у различных видов, они собрали из этих кусочков заманчивую новую гипотезу о том, что РНК служит ключевой составляющей иммунной системы одноклеточных организмов, таких как бактерии, и что эта система может быть функционально сходной с одним из объектов моих исследований, РНК-интерференцией.

Джилл не смогла бы найти лучшей приманки, чтобы завлечь меня в свои исследования. Не только вся моя научная деятельность до того момента была посвящена изучению молекул РНК, но я еще все больше концентрировалась на процессах РНК-интерференции в человеческих клетках. А тут еще Макарова и Кунин предполагали, что CRISPR представляет собой бактериальный аналог РНК-интерференции. Если это было верно, то моя лаборатория отлично подходит для того, чтобы разобраться с этим новым загадочным биологическим явлением. А перспективы были более чем соблазнительными, поскольку никто еще не провел экспериментов для подтверждения или опровержения теорий о биологическом смысле CRISPR – все только и делали, что плодили эти теории. Для биохимиков, таких как я, это был идеальный момент, чтобы ввязаться в борьбу за понимание того, как работает и для чего нужен CRISPR.

В завершение встречи с Джилл я поблагодарила ее и пообещала быть на связи. Мне нужно было переварить всю новую информацию и просчитать плюсы и минусы добавления исследований CRISPR к текущим проектам моей лаборатории. Если я соглашаюсь заниматься этой темой, мне понадобится ученый, постоянно занятый координацией работы по ней, так как у меня самой не хватило бы времени возглавить новый проект: я была слишком занята руководством лабораторией в целом.

Мне также нужно было освежить свои знания о мире бактерий и о вирусах, которые поражают эти бактерии. Я опубликовала немало научных статей о вирусе гепатита С, я изучала вирус гриппа с новым постдоком в собственной лаборатории, и я знала, что механизм РНК-интерференции тесно связан с противовирусной защитой растений и животных. Но я никогда не изучала вирусы бактерий и даже не особенно задумывалась о них. Если я собираюсь присоединиться к исследованиям Джилл, это положение дел нужно было менять.


Фредерик Туорт, британский бактериолог, работавший в начале XX века, стал первым ученым, отметившим действие бактериальных вирусов. По иронии судьбы, изначально Туорт собирался исследовать не вирусы бактерий, а вирусы, поражающие животных и растения, – а они были открыты уже давно. Однако в ходе попыток извлечь вирусы из таких субстратов, как навоз и сено, а затем культивировать их, Туорт обнаружил странную колонию бактерий из рода Micrococcus. Складывалось ощущение, что бактерии больны; вместо того чтобы, как большинство других бактерий, плотными колониями расти на питательной среде в чашках Петри, их культуры выглядели водянистыми и прозрачными. Если Туорт брал мазок с водянистой колонии микрококков и переносил его на здоровую, последняя через какое-то время тоже приобретала стеклянистый вид, словно ее чем-то заразили. Туорт написал статью, в которой предположил, что инфекционный агент в данном случае имеет вирусную природу, но идея о том, что вирусы способны заражать бактерии, в то время казалась неслыханной, а у перемен, произошедших с культурами, могли быть и другие объяснения. Ученый не мог с полной уверенностью говорить, что конкретно поразило здоровые культуры.

В 1917 году, спустя два года после публикации статьи Туорта, вирусы бактерий заново открыл канадский врач Феликс д’Эрелль. Во время Первой мировой войны д’Эрелль служил во Франции, и ему поручили расследовать причину вспышки дизентерии, которая косила солдат одного из кавалерийских эскадронов. Стремясь выяснить, почему одни больные выздоравливают, а другие нет, д’Эрелль взял у пациентов образцы кала и подверг их обстоятельному, хотя и достаточно грубому анализу. Сначала он пропустил кровянистый стул своих подопечных через мелкоячеистый фильтр, чтобы удалить из него все твердые частицы – включая бактерии. Затем д’Эрелль налил немного отфильтрованной жидкости на культуры бактерий рода Shigella, вызывающих дизентерию. На следующий день он с удивлением обнаружил, что одна из культур заразных бактерий под фекальной жидкостью “растворилась подобно сахару в воде” – исчезла буквально за ночь[50]. Что еще интереснее, когда д’Эрелль поспешил в госпиталь узнать о состоянии пациента, у которого был взят этот образец кала, он обнаружил, что больному заметно лучше. Сопоставив эти факты, д’Эрелль заключил, что возбудителя дизентерии уничтожил некий паразит, которого ученый назвал бактериофагом (“пожирателем бактерий”); эта форма жизни должна была быть достаточно маленького размера, чтобы пройти через фильтр. Судя по всему, “бактериофаг” заражал бактерии фактически так же, как другие вирусы инфицировали растения или животных.

В последующие годы было открыто множество бактериофагов, или, сокращенно, фагов, и выяснилось, что каждый из них поражает свой конкретный вид бактерий. По мере накопления знаний о новых разновидностях фагов увеличивался ажиотаж вокруг так называемой фаговой терапии – идеи о том, что бактериофагов можно использовать для лечения микробных инфекций. Хотя некоторым ученым претила идея вводить живые вирусы в организм человека, клинические испытания показывали, что фаги “не замечают” человеческие клетки и видимых побочных эффектов у фаговой терапии нет. В 1923 году д’Эрелль помогал советским ученым организовать институт в Тбилиси[51], исследования в котором были посвящены бактериофагам; во времена своего расцвета учреждение насчитывало более тысячи сотрудников, производящих тонны фагов в год для клинического использования[52]. В некоторых уголках мира фаговую терапию используют и по сей день – в Грузии в настоящее время фаги назначают при бактериальных инфекциях примерно в 20 процентах случаев[53]. Однако после того как в 1930-х были открыты антибиотики (а в 1940-х началось их массовое производство), этот способ терапии был быстро забыт, особенно на Западе.

Хотя бактериофаги нашли лишь ограниченное применение в медицине, для генетиков они стали настоящим подарком судьбы. К тому моменту, когда ученые с помощью новых электронных микроскопов с большим увеличением смогли впервые увидеть фагов (это случилось в 1940–1950-е годы), эти вирусы вкупе с бактериями-жертвами уже предоставили очередное доказательство дарвиновской теории естественного отбора. Они помогли установить, что именно ДНК, а не белки, служит “молекулой наследственности” в клетках. Тот факт, что генетический код триплетен (то есть каждые три “буквы” ДНК обозначают одну аминокислоту в белке), был впервые продемонстрирован на примере фагов; эксперименты с последними позволили также выяснить, как “включаются” и “выключаются” гены внутри клетки. Даже открытие Джошуа Ледерберга (он обнаружил, что вирусы могут вносить чужеродные гены в инфицированные ими клетки, и это стало одним из ранних подступов к генной терапии) было сделано благодаря фагу, специализирующемуся на бактериях рода Salmonella. Во многом именно эксперименты с вирусами бактерий заложили основы молекулярной генетики.

Кроме того, изучение фагов послужило толчком к революции в молекулярной биологии 1970-х годов. Исследуя иммунные механизмы, с помощью которых бактерии дают отпор фаговым инфекциям, ученые обнаружили класс ферментов, называемых эндонуклеазами рестрикции; их можно “настроить” таким образом, чтобы они разрезали фрагменты искусственно синтезированной ДНК (это было показано в простых экспериментах вне живых объектов). Используя сочетание этих ферментов с другими ферментами, выделенными из инфицированных фагами клеток, исследователи сумели создать и клонировать искусственные молекулы ДНК в лабораторных условиях. Одновременно с этим геномы фагов послужили прекрасной мишенью для только что разработанных технологий секвенирования ДНК. В 1977 году Фред Сенгер и его коллеги успешно определили последовательность всех нуклеотидов ДНК в геноме фага ФX174. Двадцать пять лет спустя тот же фаг снова оказался в центре внимания: он стал первым объектом, чей геном был синтезирован с нуля[54].


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Трещина в мироздании"

Книги похожие на "Трещина в мироздании" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Сэмюел Стернберг

Сэмюел Стернберг - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Сэмюел Стернберг - Трещина в мироздании"

Отзывы читателей о книге "Трещина в мироздании", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.