Раушан Ашкеева - Прикладная химия
Все авторские права соблюдены. Напишите нам, если Вы не согласны.
Описание книги "Прикладная химия"
Описание и краткое содержание "Прикладная химия" читать бесплатно онлайн.
Учебное пособие по дисциплине «Прикладная химия» к семинарским занятиям для студентов и магистрантов химического факультета.
В данном учебном пособии рассматриваются основные направления химизации экономики и сферы быта, практические результаты использования химических законов, закономерностей, принципов, экспериментальных методов, технологических приемов, а также химических продуктов в различных отраслях экономики и социально-бытовой сфере. В каждом разделе приведен теоретический материал, контрольные вопросы для повторения и тесты для самостоятельной работы.
Токсичные химические вещества нефти в процессе геохимической миграции в цепи почва – растения – живые организмы нарушают генетические свойства почв, оказывают ингибирующее влияние на растения, уменьшают их общую зеленую массу, вызывают глубокие изменения в составе крови живого организма, в клетках мозга, являются причиной онкологических заболеваний. Высокая степень загрязнения почв и атмосферного воздуха нефтепромыслов токсичными химическими веществами вызывает у населения тяжелые формы гепатита, болезней органов дыхания и туберкулез.
Газообразные топлива: сюда входят природный газ, попутные газы нефтедобычи, а также образующиеся во многих процессах углехимии, нефтепереработки и нефтехимии в качестве сопутствующих основным продуктам смеси газообразных горючих веществ (коксовый и генераторный газы, газы крекинга и пиролиза, отходящие газы многих производств органического синтеза). Природные газы богаты метаном (95 %) и почти не имеют в своем составе непредельных углеводородов. Попутные газы нефтяных месторождений обогащены пропаном и бутаном. В качестве примесей в горючих газах содержатся циклические и ароматические углеводороды, небольшое количество азота N2, водорода H2 аргона Ar, гелия He; нередко присутствие значительных количеств сероводорода Н2S, меркаптанов и углекислого газа СО2. В зависимости от состава газы используют как сырье для химической промышленности, а также как промышленное и бытовое топливо. Теплотворная способность природного газа 34000 кДж/м3. По сравнению с твердым и жидким топливом газ содержит меньшее количество нежелательных примесей, полностью отсутствует зольность. Но он взрывоопасен, возможны аварии на газопроводах, помещениях и так далее.
Транспорт почти на 100 % обеспечивается жидким топливом, на выработку электричества идет уголь, в быту – природный газ. Но запасы ископаемого топлива ограничены. Поэтому в настоящее время рассматриваются перспективы получения синтетического топлива. Все виды топлива близки по своему составу. Самое существенное отличие – содержание водорода. Следовательно, есть возможность химическим путем получить, например, из угля нефтеподобный набор жидких углеводородов.
ЯДЕРНАЯ ЭНЕРГЕТИКА
В конце второй мировой войны была открыта энергия атома. Ведущие страны мира взяли курс на «атомную эру». Предполагалось, что ядерная энергия позволит вырабатывать электричество в огромных количествах и очень дешево. Поэтому параллельно с совершенствованием ядерного оружия были развернуты научные и технические разработки в области создания атомных электростанций (АЭС). Интерес к АЭС стал падать в 70х годах, а после Чернобыльской катастрофы в 1986 г. сменился недоверием. Тем не менее, АЭС существуют и перспективы атомной энергии огромны.
Высвобождение ядерной энергии происходит в результате ядерных реакций, в которых меняются сами атомы. Происходит это в результате расщепления ядра (тяжелое ядро одного элемента распадается на два более легких ядра др. элементов) или ядерного синтеза (два легких ядра соединяются в одно более тяжелое ядро другого элемента). В обоих случаях суммарная масса продуктов реакции меньше, чем у исходного материала. «Теряемая» масса превращается в энергию. Количество энергии, выделяющееся при ядерной реакции, чрезвычайно велико. Мгновенное расщепление или слияние ядер одного кг вещества по своему эффекту соответствует взрыву атомной бомбы.
Основной процесс, идущий на современных АЭС – это управляемое расщепление, при котором тепловая энергия выделяется за счет высвобождения энергии связи n и р при делении ядер U-235 под воздействием n. Если при сжигании 1 г угля выделяется 7 ккал теплоты, то при «сжигании» 1 г ядерного топлива – 20 млн. ккал, т.е. почти в 3∙106 раз больше. Для агрегата ТЭС мощностью 1 млн. кВт в течение трех лет нужно 300 тыс. вагонов угля, а для АЭС той же мощности за три года потребуется два вагона ядерного топлива. Три года – продолжительность непрерывной работы реактора АЭС без смены «горючего». АЭС строятся в месте, где имеется много воды, для охлаждения реактора и где нет серьезной сейсмической опасности, отсутствует осаждение грунта и нет угрозы разрушения здания АЭС в результате каких-либо внешних причин.
В тепловыделяющих элементах (ТВЭЛах) находится ядерное горючее, содержащее обычно около 3 % U-235 и 97 % U-238. U-235 единственное природное вещество, способное самостоятельно поддерживать цепную реакцию деления ядер. В природе цепная реакция не происходит, т.к. атомы U-235 слишком рассеяны среди атомов других элементов, в том числе и стабильного U-238: 99,3 % – U-238 и 0,7 % – U-235. В таких условиях, когда U-235 спонтанно расщепляется, выделившиеся нейтроны редко достигают другие такого же атома. Поэтому высвобождается энергия одного ядра, которую можно зафиксировать с помощью специальных счетчиков. Чтобы получить ядерное топливо, добытую руду очищают и обогащают. Обогащение означает разделение U-238 и U-235 с получением материала, в котором концентрация U-235 повышена. Функция ядерного реактора на АЭС заключается в поддержании непрерывной цепной реакции, которая не должно переходить в ядерный взрыв. Это достигается путем обогащения руды до содержания в нем 3 % U-235 и 97 % U-238. Такая низкая степень обогащения не позволяет цепной реакции выйти из-под контроля.
Захватывая нейтроны n, U-235 превращается в крайне неустойчивый U-236, который расщепляется на 2-3 осколка более легких элементов (бром Br, иод I, криптон Kr, барий Ba и другие). Образующийся «дефект массы» вызывает выделение большого количества энергии и рождение новых двух-трех нейтронов, обеспечивающих дальнейшее протекание ядерной реакции. Эти новые n обладают огромной скоростью (около 20000 км/с) и начальной энергией в несколько млн. электрон-вольт. Захват нейтронов n ядрами U-235 эффективен, если движение нейтронов n в реакторе замедлить до 2 км/с. При этом появляется возможность управлять цепной реакцией в реакторе. Замедление «быстрых» нейтронов n происходит с помощью тяжелой воды или графита.
Возможна реакция и на быстрых нейтронах. Часть нейтронов захватывается ядрами неделящегося U-238, который составляет основную «начинку» ТВЭЛов. При этом появляется новое ядерное «горючее» – плутоний-239, который в природе не встречается из-за относительно малого периода полураспада: 238 92U + n → 239 92U → 239 93Np → 239 94Pu.
Pu-239 является более эффективным ядерным «горючим», чем U-235 и используется для создания ядерного оружия. Вместо U-238 можно использовать торий-232. В этом случае конечным продуктом является U-233: 232 90Th + n → 233 90Th –23,5 мин. → Pa –27,4 мин → 233 92U.
Через три года эксплуатации отработанные ТВЭЛы вынимают из реактора и около трех лет выдерживают на АЭС в спец. бассейнах. За это время полностью распадаются накопившиеся в ТВЭЛах радиоактивные продукты (радионуклиды) с малым периодом полураспада. После этого из ТВЭЛов выделяют Pu-239, а отходы готовят к захоронению. Захоронению подлежат и сами реакторы, срок службы которых составляет 30-40 лет.
Еще большую проблему представляет захоронение различных радиоактивных веществ, накопившихся в ходе многолетней наработки плутония Pu для ядерного топлива на всех АЭС. Именно радиоактивные отходы и возможность аварий на АЭС вызывают всеобщую тревогу. Чтобы оценить опасность ядерной энергетики, надо представить себе, что такое радиоактивные вещества и в чем суть их воздействия на окружающую среду. При делении какого-либо тяжелого элемента, образующиеся легкие атомы представляют собой нестабильные изотопы, которые, переходя в стабильное состояние, испускают элементарные частицы и высокоэнергетическое радиоактивное излучение. Сами же нестабильные изотопы называют радиоактивными веществами. Кроме непосредственных продуктов деления ядерного топлива нестабильными могут стать и другие вещества внутри и вокруг реактора, поглотив испускаемые при ядерной реакции n. Все эти прямые и косвенные продукты расщепления называются радиоактивными отходами АЭС.
Отходы классифицируются по различным признакам:
1. по агрегатному состоянию – твердые – детали реактора на АЭС, инструменты, спец.одежда; жидкие – вода, используемая в технологическом процессе на АЭС и т.п.; газообразные – изотопы криптона, особенно 88Kr.
2. по периоду полураспада – короткоживущие t1/2 < 1года; среднего времени жизни 1год< t1/2 < 100 лет; долгоживущие t1/2 > 100 лет.
3. по удельной активности – низкоактивные менее 0,1 Кu/м3; среднеактивные 0,1-1000 Кu/м3; высокоактивные свыше 1000 Кu/м3.
4. по составу излучения – α – излучатели (испускание ядром частицы, состоящей из двух протонов и двух нейтронов – ядро атома Не); β – излучатели (испускание атомом электронов); γ – излучатели (выброс электромагнитного излучения); нейтронные излучатели.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Прикладная химия"
Книги похожие на "Прикладная химия" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Раушан Ашкеева - Прикладная химия"
Отзывы читателей о книге "Прикладная химия", комментарии и мнения людей о произведении.