Александр Кручинин - Операционные системы
Все авторские права соблюдены. Напишите нам, если Вы не согласны.
Описание книги "Операционные системы"
Описание и краткое содержание "Операционные системы" читать бесплатно онлайн.
Данное пособие содержит курс лекций по дисциплине «Операционные системы». Предназначено для студентов вузов, обучающихся по направлению «Информатика и вычислительная техника» специальности 230101 «Вычислительные машины, комплексы, системы и сети».
Рисунок 9 – Смена режимов при выполнении системного вызова: в классической архитектуре (а); в микроядерной (б)
Таким образом, операционная система на основе микроядра при прочих равных условиях всегда будет менее производительной, чем система с классическим ядром. Именно по этой причине микроядерный подход не получил такого широкого распространения, которое ему предрекали. Примером микроядерной системы является VM/370, использующаяся в мейнфреймах.
Однако на настоящий момент не существует операционных систем с чисто классической или микроядерной архитектурой. В результате операционные системы образуют некоторый спектр, на одном краю которого находятся системы с минимально возможным микроядром, а на другом – системы, в которых микроядро выполняет достаточно большой объем функций.
Контрольные вопросы по разделу
1 Каковы две главные функции операционной системы?
2 Что такое многозадачность?
3 Перечислите основные различия между операционной системой для персонального компьютера и для мэйнфрейма.
4 Какие из приведенных ниже терминов являются синонимами? привилегированный режим; защищенный режим; режим супервизора; пользовательский режим; реальный режим; режим ядра.
5 В чем состоят отличия в работе процессора в привилегированном и пользовательском режимах?
6 Какими этапами отличается выполнение системного вызова в микроядерной операционной системе и системе с монолитным ядром?
7 В чем состоят современные тенденции развития операционных систем?
8 Каковы преимущества и недостатки микроядерной архитектуры?
9 Для чего служат менеджеры ресурсов?
10 Кем и на какой операционной системе был впервые опробован дружественный графический интерфейс?
2 Процессы и потоки
2.1 Процессы
В многозадачной системе процессор переключается между программами, предоставляя каждой от десятков до сотен миллисекунд. В каждый конкретный момент времени процессор работает только с одной программой, создавая иллюзию параллельной работы, т.е. псевдопараллелизм [14]. Настоящая параллельная работа присутствует в многопроцессорных и многоядерных системах, таких как Core 2 Duo. Следить за работой параллельно идущих процессов достаточно трудно, поэтому со временем разработчики операционных систем создали концептуальную модель последовательных процессов, упрощающую эту работу.
В этой модели все функционирующее на компьютере программное обеспечение организовано в виде набора последовательных процессов. С позиции модели у каждого процесса есть собственный виртуальный центральный процессор. На рисунке 10, а представлена схема компьютера, работающего с 4 программами. На рисунке 10, б представлены 4 процесса каждый со своим логическим счетчиком команд, идущие независимо друг от друга. На самом деле существует только один физический счетчик команд, который загружается и сохраняется при переключении процессов. На рисунке 10, в видно, что за достаточно большой промежуток времени изменилось состояние всех 4 процессов.
Поскольку процессор переключается между программами, скорость, с которой процессор производит свои вычисления, будет непостоянной и, возможно, даже будет отличной при каждом новом запуске программы.
Существует четыре основных события, приводящие к созданию процессов:
• инициализация системы;
• выполнение изданного работающим процессом системного запроса на создание процесса;
• запрос пользователя на создание процесса;
• инициирование пакетного задания.
Программист для создания процесса в UNIX должен вызвать комбинацию из двух функций fork и execve, а в Windows – CreateProcess [12].
Процесс может завершиться благодаря одному из следующих действий:
• обычный выход (преднамеренно);
• выход по ошибке (преднамеренно);
• выход по неисправимой ошибке (непреднамеренно);
• уничтожение другим процессом (непреднамеренно).
Для завершения процесса программист в UNIX должен вызвать системный запрос kill, соответствующая функция в Win32 API – TerminateProcess.
Основным отличием структуры процессов в Windows и UNIX является связь между родительским и дочерним процессами. Так в UNIX существует иерархия процессов, а в Windows все процессы равноправны. Единственное, в чем проявляется что-то вроде иерархии процессов в Windows – создание процесса, в котором родительский процесс получает специальный маркер (так называемый дескриптор), позволяющий контролировать дочерний процесс. Но маркер можно передать другому процессу, нарушая иерархию.
Рисунок 10 – 4 программы в многозадачном режиме (а); модель 4 независимых последовательных процессов (б); в каждый момент времени активна только одна программа (в)
Процесс может находиться в 3 возможных состояниях (Рисунок 11):
• работающий (в конкретный момент времени использующий процессор);
• готовый к работе (процесс временно приостановлен, чтобы позволить выполняться другому процессу);
• заблокированный (процесс не может быть запущен прежде, чем произойдёт некое внешнее событие).
Рисунок 11 – Процесс может находиться в рабочем, готовом и заблокированном состоянии
Переходы между состояниями:
1) процесс блокируется, ожидая входных данных;
2) планировщик выбирает другой процесс;
3) планировщик выбирает этот процесс;
4) доступны входные данные.
Переход 1 происходит, когда процесс обнаруживает, что продолжение работы невозможно. Переходы 2 и 3 вызываются частью операционной системы, называемой планировщиком процессов, так что сами процессы даже не знают о существовании этих переходов. Переход 4 происходит с появлением внешнего события, ожидавшегося процессом (например, прибытие входных данных).
Для реализации модели процессов операционная система содержит таблицу (массив структур), называемую таблицей процессов, с одним элементом для каждого процесса. Элемент таблицы содержит информацию о состоянии процесса, счетчике команд, указателе стека, распределении памяти, состоянии открытых файлов, об использовании и распределении ресурсов, а также всю остальную информацию, которую необходимо сохранять при переключении в состояние готовности или блокировки для последующего запуска – как если бы процесс не останавливался. В таблице 1 представлены некоторые типичные элементы таблицы процессов.
Таблица 1 – Некоторые поля типичного элемента таблицы процессов
Большое значение для создания иллюзии многопоточности на компьютерах с одним процессором имеет значение понятия прерывания. Прерывание (англ. interrupt) – сигнал, сообщающий процессору о совершении какого-либо асинхронного события [14]. При этом выполнение текущей последовательности команд приостанавливается, и управление передаётся обработчику прерывания, который выполняет работу по обработке события и возвращает управление в прерванный код.
Понятия программы и процесса отличаются друг от друга. Программа представляет собой статический набор команд, а процесс это набор ресурсов и данных, использующихся при выполнении программы. Процесс в Windows состоит из следующих компонентов:
• структура данных, содержащая всю информацию о процессе;
• адресное пространство – диапазон адресов виртуальной памяти, которым может пользоваться процесс;
• исполняемая программа и данные, проецируемые на виртуальное адресное пространство процесса.
2.2 Потоки
Далее необходимо уяснить отличие между процессом и потоком. Процесс представляет собой объект, которому принадлежат ресурсы приложения. А поток (или нить) – это независимый путь выполнения внутри процесса, разделяющий вместе с процессом общее адресное пространство, код и глобальные данные. У каждого потока имеются собственные регистры, стек и механизмы ввода, в том числе очередь скрытых сообщений. Для описания использования нескольких потоков в одном процессе используется термин многопоточность.
В отличие от различных процессов, которые могут быть инициированы различными пользователями и преследовать несовместимые цели, один процесс всегда запущен одним пользователем, и потоки созданы таким образом, чтобы работать совместно, не мешая друг другу. Как показано в таблице 2, потоки разделяют не только адресное пространство, но и открытые файлы, дочерние процессы, сигналы и т. п.
Первая колонка содержит элементы, являющиеся свойствами процесса, а не потока. Например, если один поток открывает файл, этот файл тут же становится видимым для остальных потоков, и они могут считывать информацию и записывать ее в файл. Также как и процесс, поток может находиться в одном из нескольких состояний. Переходы между состояниями потоков такие же, как на рисунке 11.
У каждого потока свой собственный стек. Стек (англ. stack – стопка) – структура данных с методом доступа к элементам LIFO (англ. Last In – First Out, «последним пришел – первым вышел») [14].
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Операционные системы"
Книги похожие на "Операционные системы" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Александр Кручинин - Операционные системы"
Отзывы читателей о книге "Операционные системы", комментарии и мнения людей о произведении.